contents and sample pages

Title	Tackling Tables
Author(s)	Paul Swan
ISBN/ISSN	978-0-958632-6-0
Published by	A-Z Type

This document is copyright and has been made available with permission.

Please contact the Australian Association of Mathematics Teachers to purchase this product.

AAMT is the nation's premier organisation of mathematics educators: supporting and enhancing the work of teachers; promoting the learning of mathematics; representing and promoting interests in mathematics education.

POST GPO Box 1729 Adelaide SA 5001

PHONE 08 8363 0288

FAX 08 8362 9288

EMAIL office@aamt.edu.au

INTERNET www.aamt.edu.au

Contents

What are the Basic Multiplication Facts? 6	Venn Diagrams	47
Before the Basic Multiplication Facts	Square Numbers	48
Properties of Multiplication	Consolidation – Leading to Fluency	49
Reducing the Memory Load12	Flash Cards	51
Strategies That Assist in Learning the	Fact Finder	52
Basic Multiplication Facts	Fact Finder Blanks	53
Developing Fluency with the Facts	Finding Facts	54
Approaches to Learning the Basic Multiplication Facts	Finding Facts	55
Finding Out Which Facts Students Know	Multiplication Arithmagons	56
Making A Tables Map21	Multiplication Arithmagons	57
Making a Paper Calculator22	Finger Multiplication 1	58
Using a Paper Calculator	Finger Multiplication 2	60
Triangular Tables	Finger Multiplication 3	61
Triangular Tables	Finger Multiplication 4	62
I Know it, I Can Work it Out, I Have no Idea 26	Vedic Multiplication: Vertically & Crosswise	63
Self Check 27	The Vedic Square	64
Why do Some Students Have Difficulty Learning the	The Vedic Square	65
Tables? 28	Last Digit Patterns	66
The Development Phase	The Ones Digit	67
Number Lines	Circular Multiple Mazes	68
Making a Pocket Multiplier	Circular Multiple Mazes	69
The Array Game	All of The Answers	70
Array Cover Ups	Product Pairs	71
100 Dot Arrays	Marking Multiples	72
Multiplication Dot Arrays	Marking Multiples	73
Doubling and Halving	Multiplication Jigsaw	74
Making the Links	Multiplication Jigsaw	75
x 239	Multiplication Jigsaw	76
x 340	Developing Speed and Efficiency	77
x 441	Develop Speed and Efficiency	
x 542	Answers	83
x 643	Multiplication Match Cards	84
x 744	Spin A Fact	85
x 845	Multiples Grid	86
x 946	Small Tables Charts	87
	Tables Chart	88

Why do Some Students Have Difficulty Learning the Tables?

Students appear to have little difficulty learning sporting and entertainment facts and trivia. Students also learn to read and spell hundreds of words and yet they struggle to remember the basic multiplication facts. Clearly for the most part while memory does play a role in learning the basic multiplication facts, it is not the most important factor and should not be blamed for students not learning them. It is acknowledged, however, that there are some students with poor memories that will need to rely on using strategies to reconstruct the basic multiplication facts.

Experience suggests that students who rely solely on memorising the basic multiplication facts are making the job of learning the 'tables' much harder than it needs to be. Consider the symbols shown in the grid below. Imagine trying to remember each individual symbol. It would certainly be difficult. However, on deeper examination of the grid certain patterns become obvious that making the job of learning the symbols much simpler. For example,

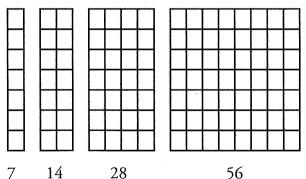
consider the first row and the first column – the symbols are all the same. Likewise focus on the second row and column. Now look at the sixth column and the sixth row.

Clearly looking for, and using patterns will assist students to reduce the number of table facts that need to be memorised. Further examination of the symbols in the grid will indicate that the symbols are repeated on either side of the diagonal that runs from the top left of the grid to the bottom right. Consider the last column and row. What pattern can you spot?

Many of the activities contained in the Activities section focus on the patterns to be found in the multiplication grid. Students are less likely to notice the patterns when the basic multiplication facts are printed in the traditional 'table format' [See right of p. 6].

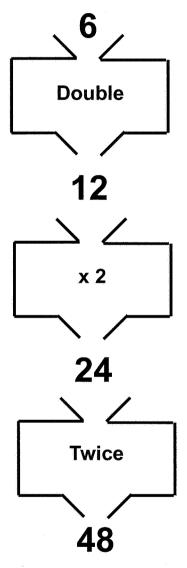
											
	*	•	*	♠	**		*	*	$\stackrel{\wedge}{\boxtimes}$		0
*	♣	*	*	*	*	*	*	*	*	*	*
*	*	•	*	•	*		*	*	☆	O	0
Y	*	*	*	*	☆	♦ ♣	+4	* *	♦ ☆	♦ ☆	V O
♠	*	٠	*	0	**	♦ -\$-	♦☆	**	∀ ∻	* *	\$ O
*	*	*	☆	+4	♦ ☆	₩.	v *	♥☆	♦ ♥	◆☆	* O
4	*	- S	*	♦ •	*	₩	ቃ	♠ ₽	⊹ ♣	*** = B	*
*	*	*	**	♦☆	v *	\$ \$	◆ ☆	♥	⋄ ☆	R	фO
*	♣	*	* *	**	♥ ☆	, • •	**	*0	**	☆◆	*0
☆	♣	☆	♦ ☆	v *	۸۶	∻ ♣	*☆	***	**	**	фО
0	*	٥	♦☆	* *	◆ ☆	+ * + si [®] n	m ² e + * +	☆◆	**	☆♦	00
0	♣	0	V O	\$ O	* O	*	άO	*0	¢Ο	© O	♦ 00

x 8


The strategies previously discussed when dealing with the 'two times' and 'four times table' may be applied to the learning of the 'eight times table'. However, there is an added advantage at this point because the students will already have developed fluency with the 'two and four times tables'. Some students may not make the connection with these related 'tables' so they need to be made explicit.

Colouring the multiples of four and eight will help students to spot the relationship between the 'four and eight times table'.

1	2	3	4	5	6	7	.8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	. 28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100


Most students will notice that when colouring in the multiples of eight, every fourth cell has already been coloured. Doubling the 'four times table' produces the 'eight times table'.

Another form of doubling strategy may also be used. For example, to work out 7 x 8 would involve doubling 7, doubling again and then double again.

This strategy may be summarised as double-double-double.

Function machines (see below) can be used to introduce the double-double-double strategy. Explain that when a number enters a function machine it is changed before it comes out the other side. Six eights are forty-eight may be calculated using the double-double-double strategy as illustrated by the function machines below.

It should be noted that the the basic multiplication fact $7 \times 8 = 56$ and the equivalent 8×7 seem to cause the most difficulty for students and adults. (See page 60, Devlin, K. (2000) *The Mathematical Gene*. London: Weidenfeld & Nicholson)