Proving congruence: Student worksheet

http://topdrawer.aamt.edu.au/Geometry/Misunderstandings/Similar-or-congruent/Complete-the-congruence-proof

Complete these proofs, putting in the reasons and missing angles.
Mark the equal angles and sides you find on the diagram as you go.

1. Given: $B C=D C ; A B \perp B C$ and $C D \perp D A$

Aim: To prove $\triangle A B C \equiv \triangle A D C$

2. Given: ABCD is a rectangle

Aim: To prove $\triangle A B C \equiv \triangle A D C$

Proof:
In $\triangle A B C$ and $\triangle A D C$

1. $A B=D C$
()
2. $A D=B C$ ()
3. $A C$
$\therefore \triangle A B C \equiv \triangle A D C()$

Proof:
In $\triangle A B C$ and $\triangle A D C$

1. $\angle B=\angle D$ ()
2. $A C$ is common
()
3. $B C=D C$
$\therefore \triangle A B C \equiv \triangle A D C($
)

$D \quad C$

3. Given: $A B \| D C$ and $B P=P D$

Aim: To prove $\triangle A B P \equiv \triangle C D P$

Proof:
In $\triangle A B P$ and $\triangle C D P$

1. $\angle A=\angle C$
()
2. $\angle A P B=\angle D P C$ ()
3. $B P=P D$
()
$\therefore \triangle A B P \equiv \triangle C D P(\quad)$

4. Aim: To prove $B D=D C$

Proof:
In $\triangle A B D$ and $\triangle A C D$

1. \angle	$=\angle$
2.	=
()
3.	$=$
()
$\therefore \triangle A B D \equiv \triangle A C D($	()
$\therefore B D=C D$	
()

5. Aim: \quad To prove $P Q \| S T$

Proof:
In $\triangle P Q R$ and $\triangle S T R$

6. Aim: To prove $\angle B=\angle D$

7. Given: $P Q R S$ is a parallelogram. $P T=R U$.

Aim: \quad To prove $T S=Q U$

8. Given: $A B C D$ is a square.
$B H \perp A P$ and $D K \perp A P$.
Aim: \quad To prove $A H=D K$

Proof:

In $\triangle A B H$ and $\triangle A D K$

1. $\angle A H B=\angle A K D=90^{\circ}$
()
2. $\angle H A B+\angle A B H+\angle A H B=180^{\circ}$
()
$\therefore \angle A B H=90^{\circ}-\angle H A B$
But $\angle D A K=90^{\circ}-\angle H A B$
$\therefore \angle A B H=\angle D A K$
3. $A B=A D$ ()
$\therefore \triangle A B H \equiv \triangle D A K \quad(\quad)$
$\therefore A H=D K$
(
4. Given: $A B C D$ and $A E F G$ are both squares.

Aim: \quad To prove $B E=D G$

