Proving congruence: Answers

http://topdrawer.aamt.edu.au/Geometric-reasoning/Misunderstandings/Similar-or-congruent/Complete-the-congruence-proof

Complete these proofs, putting in the reasons and missing angles.
Mark the equal angles and sides you find on the diagram as you go.

1. Given: $B C=D C ; A B \perp B C$ and $C D \perp D A$

Aim: To prove $\triangle A B C \equiv \triangle A D C$

2. Given: $A B C D$ is a rectangle

Aim: To prove $\triangle A B C \equiv \triangle A D C$

Proof:
In $\triangle A B C$ and $\triangle A D C$

1. $\angle B=\angle D=90^{\circ}$
(given)
2. $A C$ is common
(given)
3. $B C=D C$
$\therefore \triangle A B C \equiv \triangle A D C(\mathrm{R} \underline{\mathrm{H}})$

Proof:
In $\triangle A B C$ and $\triangle A D C$

1. $A B=D C$
(opposite sides rectangle)
2. $A D=B C$
(as above)
3. $A C$
$\therefore \triangle A B C \equiv \triangle A D C(\underline{S} \underline{S} \underline{S})$
4. Given: $A B \| D C$ and $B P=P D$

Aim: To prove $\triangle A B P \equiv \triangle C D P$

Proof:
In $\triangle A B P$ and $\triangle C D P$

1. $\angle A=\angle C$
(alternate angles; $A B \| C D$)
2. $\angle A P B=\angle D P C$
(vertically opposite)
3. $B P=P D$
(given)
$\therefore \triangle A B P \equiv \triangle C D P(\underline{\mathrm{~A}} \underline{\mathrm{~S}})$

4. Aim: To prove $B D=D C$

You cannot use the property of $A D$ bisecting $B C$, as this is the goal of the question!
5. Aim: \quad To prove $P Q \| S T$

Proof:
In $\triangle A B D$ and $\triangle A C D$

1. $\angle A D C=\angle A D B=90^{\circ}$
(given)
2. $A B=A C$
(given)
3. $A D=A D$
(common)
$\therefore \triangle A B D \equiv \triangle A C D(\underline{\mathrm{R}} \underline{\mathrm{S}})$
$\therefore B D=C D$
(matching sides of congruent Ds)

Proof:
In $\triangle P Q R$ and $\triangle S T R$

1. $\mathrm{PR}=\mathrm{RT}$
(given)
2. $\angle P R Q=\angle S R T$
(vertically opposite)
$Q R=R S$
(given)
$\therefore \triangle P Q R \equiv \triangle T S R(\underline{S} \underline{\mathrm{~A}})$
$\therefore \angle P Q R=\angle R S T$
(matching angles of congruent Ds)
But these are alternate angles
$\therefore P Q \| S T$
(alternate angles are equal)
3. Aim: To prove $\angle B=\angle D$

In $\triangle A B C$ and $\triangle A D C$ B

1. $D C=A B$ (given)
2. $\angle B A C=\angle A C D$ (alternate angles; $A B \| C D$)
3. $A C$ is common
$\therefore \triangle A B C \equiv \triangle A D C(\mathrm{~S} \mathrm{~A} \mathrm{~S})$
$\therefore \angle B=\angle D$ (matching angles of congruent Ds)
4. Given: $P Q R S$ is a parallelogram. $P T=R U$.

Aim: \quad To prove $T S=Q U$

In $\triangle P T S$ and $\triangle R U Q$

1. $P T=U R$ (given)
2. $\angle T P S=\angle Q R S$
(opp. angles parallelogram)
3. $\mathrm{PS}=\mathrm{QR}$
(opp. sides parallelogram) $\Delta P T S \equiv \triangle R U Q(\underline{\mathrm{~S}} \underline{\mathrm{~S}})$
$\therefore T S=Q U$ (matching sides of cong. triangles)
4. Given: $A B C D$ is a square.
$B H \perp A P$ and $D K \perp A P$.
Aim: \quad To prove $A H=D K$

Proof:
In $\triangle A B H$ and $\triangle A D K$

1. $\angle A H B=\angle A K D=90^{\circ}$ (given)
2. $\angle H A B+\angle A B H+\angle A H B=180^{\circ}$ (angle sum D $A H B$)
$\therefore \angle A B H=90^{\circ}-\angle H A B$
But $\angle D A K=90^{\circ}-\angle H A B$
($\angle D A B=90^{\circ}, A B C D$ is a square)
$\therefore \angle A B H=\angle D A K$
3. $A B=A D$
(sides of a square)
$\therefore \triangle A B H \equiv \triangle D A K$ (A A S)
$\therefore A H=D K$
(matching sides of cong. triangles)

Let $x=\angle E A B$
$\therefore \angle B A G=90^{\circ}-x$ ($\angle E A G=90^{\circ}$, square $\left.E A G F\right)$
$\therefore \angle G A D=90^{\circ}-\left(90^{\circ}-x\right)=x$ ($\angle B A D=90^{\circ}$, square $A B C D$)
In $\triangle A E B$ and $\triangle A G D$

1. $A B=A D$ (sides of square ABCD)
2. $\angle E A B=\angle G A D$ (see above)
3. $A E=A G$ (sides of square $A E F G$)
$\triangle A E B \equiv \triangle A G D(\underline{\mathrm{~S}} \underline{\mathrm{~A}} \underline{\mathrm{~S}})$
$\therefore B E=D G$ (matching sides of cong. triangles)
