Simple similarity problem

http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-proof/Proving-Pythagoras-theorem/Dissected-proof

1. Prove that $\triangle A B C$ is similar to $\triangle C D E$.
2. Hence, if $A B=8, B C=5$ and $C D=10$, find $D E$.

Solution

In $\triangle A B C$ and $\triangle C D E$

$\angle C A B=\angle E C D$	(given)		
$\angle A C B=\angle A E D$	(corresponding angles, $B C \\| D E$)		
$\therefore \triangle A B C\\|\\| C D E$	(AAA)		
$\therefore \frac{A B}{C D}=\frac{B C}{D E}=\frac{A C}{C E}$	(matching sides of similar triangles)		
$\therefore \frac{8}{10}=\frac{5}{x}$			
$10 x$			
$8 x=50$			
$x=\frac{50}{8}$			
$x=12.5$			

AAMT - TOP DRAWER TEACHERS

© 2013 Education Services Australia Ltd, except where indicated otherwise. This document may be used, reproduced, published, communicated and adapted free of charge for non-commercial educational purposes provided all acknowledgements associated with the material are retained.

