Proving Pythagoras' theorem

http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-proof/Proving-Pythagoras-theorem/Dissected-proof

In any right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Aim: To prove $c^{2}=a^{2}+b^{2}$

$\frac{c}{b}=\frac{a}{C D}=\frac{b}{y}$	In $\triangle A B C$ and $\triangle A D C$	
(matching sides of similar triangles)	(both 90° given)	
$\angle A C B=\angle A D C$	$\therefore c^{2}=a^{2}+b^{2}$	
$\therefore \triangle A B C \\| \triangle A C D$	is common	
$\angle A$	$\therefore \triangle A B C \\| \triangle C B D$	
$\therefore \frac{A B}{A C}=\frac{B C}{C D}=\frac{A C}{A D}$	$\therefore a^{2}=c x$	
(AAA)	$\therefore \quad \frac{c}{b}=\frac{b}{y}$	
(both 90 ${ }^{\circ}$ given)	$\therefore b^{2}=c y$	
$\angle B$	(AAA)	
Now $a^{2}+b^{2}=c x+c y$	$\angle A C B=\angle B D C$	
$=c(c)$	In $\triangle A B C$ and $\triangle B D C$	
(matching sides of similar triangles)	$=c(x+y)$	
is common	$=c^{2}$	
$\frac{c}{a}=\frac{a}{x}=\frac{b}{C D}$	$\therefore \frac{A B}{C B}=\frac{B C}{B D}=\frac{A C}{C D}$	

