

Proving Pythagoras' theorem

 $\frac{http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-proof/Proving-Pythagoras-theorem/Dissected-proof}{}$

In any right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Aim: To prove $c^2 = a^2 + b^2$

AAMT — TOP DRAWER TEACHERS

© 2013 Education Services Australia Ltd, except where indicated otherwise. This document may be used, reproduced, published, communicated and adapted free of charge for non-commercial educational purposes provided all acknowledgements associated with the material are retained.

$\frac{c}{b} = \frac{a}{CD} = \frac{b}{y}$	In $\triangle ABC$ and $\triangle ADC$
(matching sides of similar triangles)	(both 90° given)
$\angle ACB = \angle ADC$	$\therefore c^2 = a^2 + b^2$
$\therefore \Delta ABC \mid\mid\mid \Delta ACD$	is common
$\angle A$	$\therefore \Delta ABC \mid \mid \mid \Delta CBD$
$\therefore \frac{AB}{AC} = \frac{BC}{CD} = \frac{AC}{AD}$	$\therefore a^2 = cx$
(AAA)	$\therefore \frac{c}{b} = \frac{b}{y}$
(both 90° given)	$\therefore b^2 = cy$
$\angle B$	(AAA)
Now $a^2 + b^2 = cx + cy$	$\angle ACB = \angle BDC$
= c(c)	In $\triangle ABC$ and $\triangle BDC$
(matching sides of similar triangles)	= c(x + y)
is common	$= C^2$
$\frac{c}{a} = \frac{a}{x} = \frac{b}{CD}$	$\therefore \frac{AB}{CB} = \frac{BC}{BD} = \frac{AC}{CD}$