

Pythagoras similarity proof

 $\frac{http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-proof/Proving-Pythagoras-theorem/Dissected-proof}{}$

Aim: To prove $c^2 = a^2 + b^2$

Proof: In $\triangle ABC$ and $\triangle ADC$

 $\angle A$ is common

 $\angle ACB = \angle ADC$ (both 90° given)

 $\therefore \Delta ABC \mid \mid \mid \Delta ACD$ (A)

 $\therefore \frac{AB}{AC} = \frac{BC}{CD} = \frac{AC}{AD}$ (matching sides of similar triangles)

 $\frac{c}{b} = \frac{a}{CD} = \frac{b}{y}$

 $\therefore \quad \frac{c}{b} = \frac{b}{y}$

 $\therefore b^2 = cy$

In $\triangle ABC$ and $\triangle BDC$

 $\angle B$ is common

 $\angle ACB = \angle BDC$ (both 90° given)

 $\therefore \Delta ABC \mid \mid \mid \Delta CBD$ (AAA)

 $\therefore \frac{AB}{CB} = \frac{BC}{BD} = \frac{AC}{CD}$ (matching sides of similar triangles)

 $\frac{c}{a} = \frac{a}{x} = \frac{b}{CD}$

 $\therefore a^2 = cx$

Now $a^2 + b^2 = cx + cy$

=c(x+y)

=c(c)

 $\therefore c^2 = a^2 + b^2$