Pythagoras similarity proof

http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-proof/Proving-Pythagoras-theorem/Dissected-proof

$$
\begin{aligned}
& \text { Aim: } \quad \text { To prove } c^{2}=a^{2}+b^{2} \\
& \text { Proof: } \quad \text { In } \triangle A B C \text { and } \triangle A D C \\
& \angle A \text { is common } \\
& \angle A C B=\angle A D C \quad \text { (both } 90^{\circ} \text { given) } \\
& \therefore \triangle A B C \| \triangle A C D \quad \text { (AAA) } \\
& \therefore \frac{A B}{A C}=\frac{B C}{C D}=\frac{A C}{A D} \quad \text { (matching sides of similar triangles) } \\
& \frac{c}{b}=\frac{a}{C D}=\frac{b}{y} \\
& \therefore \quad \frac{c}{b}=\frac{b}{y} \\
& \therefore b^{2}=c y \\
& \text { In } \triangle A B C \text { and } \triangle B D C \\
& \angle B \text { is common } \\
& \angle A C B=\angle B D C \quad \text { (both } 90^{\circ} \text { given) } \\
& \therefore \triangle A B C \| \triangle C B D \quad \text { (AAA) } \\
& \therefore \frac{A B}{C B}=\frac{B C}{B D}=\frac{A C}{C D} \quad \text { (matching sides of similar triangles) } \\
& \frac{c}{a}=\frac{a}{x}=\frac{b}{C D} \\
& \therefore a^{2}=c x \\
& \text { Now } a^{2}+b^{2}=c x+c y \\
& =c(x+y) \\
& =c(c) \\
& =c^{2} \\
& \therefore c^{2}=a^{2}+b^{2}
\end{aligned}
$$

