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My presidential address to The Mathematical Association (UK) in April 2016 was 

entitled ‘Inspiring Teachers’. The concept was a talk that might trace my mathematical 

experiences from grammar school sixth form, through my development in retirement 

as a contributor to masterclasses for the UK Mathematics Trust and the Royal 

Institution, learning from the students and from the inspiring teachers at whose 

masterclasses I assist, to the small understanding of Key Stage 2 Mathematics that I am 

gradually acquiring through an hour a week with some Year 6 students and their 

remarkable teachers in a local primary school. 

 Three months later I was greatly honoured to be invited to deliver the Hanna 

Neumann Memorial Lecture to the AAMT biennial conference 2017. Late in October 

2016 a request came for a title. I was stumped. But just then there arrived out of the 

blue—by airmail—a delightful letter from Deanne Whittleston of Sydney. It was dated 2 

November 2016 and I have permission to quote from it: 

She [Hanna Neumann] was remarkable for many reasons but to me she was remarkable 
as she managed to get me through Pure Mathematics I and in all my years of study (13 at 
school, 5 at ANU, 2 at Canberra University and 5 studying law in Sydney) she was the best 
teacher I ever had. How she did it I do not know. 
In my Pure Maths I class at ANU in 1967, there were about 200 students (only 4 of whom 
were women, of whom I was one). Hanna taught that class as though she knew us all 
intimately—she was incredible. 

 The lovely coincidence of the arrival of this letter just when I was at a loss for a 

lecture title tempted me to re-use that of my earlier address—though I was clear in my 

mind that the actual address would have to be very different. The title is deliberately 

ambiguous. So is the second half that I have added later. 

 Another point about the title is that no abstract is needed; yet another, that the 

words can be permuted in several ways, such as ‘Challenging Children Inspiring 

Teachers’ and ‘Teachers Inspiring Challenging Children’. And of course, as so often, 

when a title is requested long in advance, what was needed was something that would 

restrict the content on the day as little as possible. 

 As I have written in The Mathematical Gazette (November 2016), my lectures are 



designed to be ephemeral oral presentations. They are not designed to be written down 

and published as articles. Please bear that in mind gentle reader, and judge accordingly. 

If you find something of value here I shall be delighted; if not, I shall not be surprised. 

Eleven-year old Nathan on 9 June this year: 

 

1 2 3 4 

Choose four numbers, one 

from each row, one from each 

column. Whatever the choice 

you make, they add to 34. 

5 6 7 8 

9 10 11 12 

13 14 15 16 

 

 I have no idea where this came from. Possibly from one of his family. Quite probably 

a discovery of his own. The context was that two weeks earlier, on the last Friday before 

the week-long half-term holiday, eleven high-ability Year 6 children, a teacher and I, 

had started from D �urer’s famous 4 × 4 magic square and had investigated other, mostly 

smaller, magic squares. These squares captured the children’s imagination. And so it 

was that Nathan, refreshed by his holiday, came up with his discovery. 

 It was new to me. The response had to be “Lovely! Can you explain to me WHY it 

works? What about squares of other sizes?” By the end of the session (45 minutes) the 

children had investigated squares of sizes down to 1 × 1 (one of the girls did this) and up 

to 10 × 10, and three or four of them had understood why it works. Those were 

challenged to write their explanations down. But writing mathematical explanations is, 

in my somewhat limited experience, not something that eleven-year olds, even bright 

ones, put high on their agenda. 

Year 10 children are fourteen or fifteen years old. The masterclasses offered by the UK 

Mathematics Trust and by the Royal Institution of Great Britain are aimed at a group 

consisting of two of the ablest children in each of twenty to thirty schools. Since average 

cohorts will be between three and four classes per year (smaller in independent 

schools) the clientele of these masterclasses might be expected to come from the top 2% 

or 3% of the ability range. Of course, ability does not work quite that way; even so, the 

children will be among those who (in England and Wales, possibly also in Scotland and 

Northern Ireland) are deemed to be ‘Gifted & Talented’ (in a semi-formal political 

sense). These masterclasses are intended to show able children that there is 

mathematics outside of their syllabuses, that mathematics is not done and dusted, that 

there are areas where mathematicians in industry and in universities are still struggling 

to gain understanding. Here is an example of a Year 10 masterclass on combinatorics of 

words, that hides some deep group theory in which there are still many open research 

problems.  



 We start with an alphabet {a, b, c…}, as few or as many letters as we wish, and we 

focus on words. In this context words are any strings of letters such as;  

 

a,  aa,  aaabaccba,  bbababaaaab, 
 

They are meaningless—all that is of interest is the combinatorics associated with linear 

arrangements of symbols. The length of a word w is defined simply to be the number of 

letters in w. The examples above have lengths 1, 2, 9 and 11 respectively. An important 

convention is that we allow length 0, no letters! But this word needs to be seen on the 

page, so we write 1 for the ‘empty’ word. 

 Before we move on to transformation rules, the main topic, let’s digress briefly (but 

usefully). 

Challenge  

Think of a good way to list the words in the two-letter alphabet {a, b}. 

 

It does not take children long to realise that a list starting 

 

a, aa, aaa, aaaa, aaaaa,… 
 

as a dictionary might, will never reach words that involve the letter b. And then some 

children have the idea of length-lex (also known as shortlex) listing: 

 

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, 
aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, baaa, baab… 

Exercises  

1. What comes next after abababb? 

2. What is the 64th word? The 100th word? The 2017th word? 

3. Can you find a general rule? 

 

Once we are all happy that we know what is meant by ‘words’, that a word (in this area 

of mathematics) is just a meaningless string of letters, of any length, including length 0, 

then we move on. 

 In this branch of mathematics, we have transformation rules to change words into 

other words. We want to find out what effect these changes have. 

Focus on words w in the one-letter alphabet {a}. Choose a number—let’s say 4. Then 

we have two rules: 

• Expansion rule: Choose any word u and expand w by inserting uuuu between 

two adjacent letters of w, or at the front or at the back of w. 

• Contraction rule: If we see uuuu somewhere in w (a part of w consisting of 4 

consecutive non-overlapping instances of some word u) we may contract w by 

deleting it and closing up. 



 So for example, with u = aa expansion may change aaa to 

  
aaaaaaaaaaa , and with 

u = aaa contraction can change 

  
aaaaaaaaaaaaaaaaa  to aa aaa. 

Equality of words 

We say that words v and w have the same value, and we write v = w if word v can be 

changed to word w by expansions and contractions any number of times (using the 

same or different words u), in any order. Since every expansion may be undone by a 

contraction, and vice-versa, if word v can be changed to word w by expansions and 

contractions any number of times then also w can be changed to v. 

Exercise 

Organise the following words into groups so that those in a group have the same value: 

 

1, a, aaa, aaaaa, aaaa, aaaaaaaaaaa (11), 

aaaaaaaaaaaaa (13), aaaaaaaaaaaaaaaa (16) 

Problem 

For this transformation rule, how many different values are there? 

Answer 

For this transformation rule there are 4 different values: any word has the same value 

as one of 1, a, aa, aaa, and these are different. 

 

  

Stay with the one-letter alphabet {a}, but what if we replace 4 by 5? Now we have words 

in the one-letter alphabet {a} and our transformation rules are insertion or deletion of 

uuuuu. Equality of values is defined as before: we write v = w if word v can be changed 

to word w by expansions and contractions of this kind. 

Problem 

How many different values are there now? 

 

It is not hard to see that the answer is answer 5. 

 

Problem 

What is the answer if we replace 4 by 3 instead of by 5? Or by 12? Or by n? 

 

Focus on words in the one-letter alphabet {a}; permitted transformations are insertion 

or deletion of un (that is, n consecutive non-overlapping instances of a word u); write v 
= w if word v can be changed to word w by expansions and contractions; and the basic 

problem is, how many different values are there? The answer is that words v and w 

have the same value if their lengths leave the same remainder when divided by n. That 

is, any word has the same value as just one of these words: 



 

1, a, aa, aaa … an–1 

 

So, there are n different values. 

Focus on words w in the two-letter alphabet {a, b}. For our next transformation rule we 

again choose a number—let’s say 2 . Then our rules are: 

Expansion rule 

Choose any word u and expand w by inserting uu between two adjacent letters of w, or 

at the front or at the back of w. 

Contraction rule 

If we see uu somewhere in w (a part of w consisting of 4 consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 
changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). 

With this transformation rule for words in the two-letter alphabet {a, b}, how many 

different values are there? 

When this topic is used for a Year 10 masterclass, it is usually spread over two sessions, 

each of 70 or 80 minutes, on successive days. The break is planned to come here. The 

three-part exercise about the length-lex listing of words in the two-letter alphabet, 

together with this problem, are offered as “homework”, and are discussed at the start of 

the second day. 

 Have you found, given a little time, that any word w has the same value as one of 

these: 

1, a, b, ab, ba, aba, bab? 

 

But are these all different? 

 

 Perhaps about 400 or 500 children have been exposed to this question (a question 

posed in different language to first-year undergraduates at my university) and the 

number who have worked out that the answer is ‘no’ is positive but small (around 10):  

 
ba = aaba = aababb = aababb = ab 

 

Thus ba = ab , and it then follows quickly that aba = b and bab = a. Therefore, for this 

example of a transformation rule for words in a two-letter alphabet there are values. 

Listed in length-lex order they are 1, a, b, ab. 



 If time permits we investigate what happens when we keep the same rule but work 

with words in larger alphabets. It does not take the majority of the children long to 

realise that they can use what they have just discovered (or been shown) to treat words 

in {a, b, c}. by focussing first on those that do not involve c, then those that do not 

involve b, then words that do not involve a, and the upshot is that, with the rule ‘insert 

or delete uu’, any word has the same value as one of: 

 

1, a, b, c, ab ac, bc, abc 

 

and these are all different, so there are 8 values. And if the alphabet has 26 letters then 

there will be 226
 different values; if the alphabet has m letters then there will be 2m 

different values. 

 Next, we return to words w in the two-letter alphabet {a, b} and we investigate the 

rule where 2 is replaced by 3. That is:  

Expansion rule 

Choose any word u and expand w by inserting uuu between two adjacent letters of w, 

or at the front or at the back of w. 

Contraction rule 

If we see uuu somewhere in w (a part of w consisting of 4 consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 

changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). And as before, the fundamental problem is: how many 

different values are there now? The answer now (two-letter alphabet, insertion or 

deletion of three consecutive instances of words u) is that there are 27 different values 

of words. But this would be a hard problem for third-year or fourth-year university 

students! 

Start with two positive whole numbers m, n. We work with words w in an alphabet that 

has m letters; n is known as the exponent. 

Expansion rule 

Choose any word u and expand w by inserting un
 between two adjacent letters of w, or 

at the front or at the back of w. 

Contraction rule 

If we see un
 somewhere in w (a part of w consisting of n consecutive non-overlapping 

instances of some word u) we may contract w by deleting it and closing up. 

 

As before, we write v = w if word v can be changed to word w (or, equivalently, w 

changed to v) by expansions and contractions (any number of times, in any order, using 

the same or different words u). Call the resulting list (organised in length-lex order) of 

different values B(m, n). 



Is the list B(m, n) finite? If so, how long is it? 

 

William Burnside and his problem.  
‘On an unsettled question in the theory of discontinuous groups’  

Quarterly Journal of Mathematics, 1902:  
is B(m, n) finite? Now, in 2017, much is known, much remains unknown. 

At this point in a Year 10 masterclass I would spend fifteen or twenty minutes showing 

the children something of what we know, something of what is still unknown despite 

great efforts by many mathematicians. The fact that (in spite of the clue in the title of 

Burnside’s paper) this is all a part of modern group theory remains hidden. 

 But what is the hidden group theory? In fact, B(m, n) forms a group. It is the “freest” 

group generated by the m letters subject only to the condition that un = 1 for every word 

u in the m generators (that is, every element of the group). Technically, un = 1 is an 

identical relation in B(m, n) in the sense of B. H. Neumann, Identical relations in 
groups, PhD thesis, Cambridge (1935), and article published in Mathematische 
Annalen (1937). 

  

BHN in Cardiff, circa 1937. BHN in Canberra, circa 1970. 

 There is more hidden group theory, though. The groups that satisfy a given set of 

identical relations form what is called a variety of groups. 

The abelian variety consisting of the groups in which ab = ba (or equivalently a–1b–1ab 
= 1) for all elements a, b. 

The Burnside variety consisting of all groups in which un = 1 for all elements u. 

 



 
 

The 1967 monograph. Hanna in Canberra, 1959. 

 

The inaugural Vice-President and President of AAMT. 

Take words in a two-letter alphabet {a, b}. Words v, w are deemed to have equal value 

if one can be obtained from the other by insertion or deletion of words of the form 

uuuuu (written u5
 ). The resulting list of different words is known as B(2, 5): 

 
Is B(2, 5) finite? 

 

It is unknown. That way fame and fortune lie! 


