contents and sample pages

Title	The Making of Mathematics
Author(s)	Paul Scott &Peter Brinkworth
ISBN/ISSN	978-0-646-20633-2
Published by	AAMT Inc.

This document is copyright and has been made available with permission.

Please contact the Australian Association of Mathematics Teachers to purchase this product.

AAMT is the nation's premier organisation of mathematics educators: supporting and enhancing the work of teachers; promoting the learning of mathematics; representing and promoting interests in mathematics education.

POST GPO Box 1729 Adelaide SA 5001

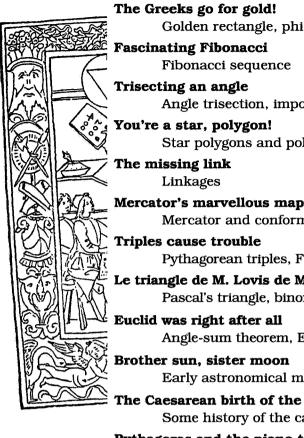
PHONE 08 8363 0288

FAX 08 8362 9288

EMAIL office@aamt.edu.au

INTERNET www.aamt.edu.au

CONTENTS



A mathematical hero

Plato's solids

Figure it out!

The legacy of Ahmes

Ahmes: give us a break!

The great geometer of Perga

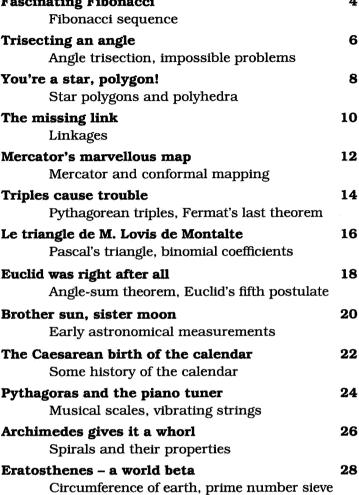
Latin squares

Fractions

Conics Dido's problem

Euler's conjecture

Absurd!



Heron's formula and extensions

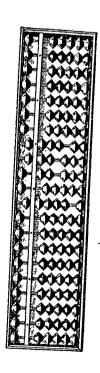
Surds, reductio ad absurdum From fly on the wall to spy in the sky

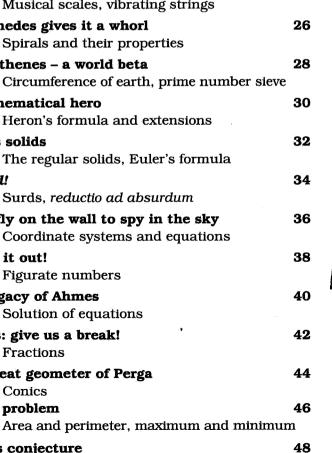
Figurate numbers

Solution of equations

The regular solids, Euler's formula

Coordinate systems and equations



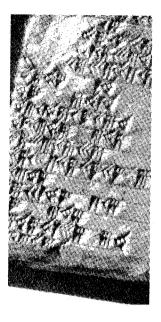


•

It all adds up!	50
Magic squares	
Running around in circles Straightedge and compass constructions	
Now picture this Perspective	54
Chances are Probability	56
The curious case of the matrix Determinants and matrices	
Rods & logs The logarithm, the slide rule	60
Getting things in perspective Projective geometry	62
I see your argument Logic, Venn diagrams	64
thy fearful symmetry Symmetries and groups	66
Made to measure Weights and measures	68
Tally ho! The abacus, calculators, computers	70
Am i real? Complex numbers	72
Area & slope The beginnings of the calculus	74
Graphs	76
Networks, graph theory	
Picturing the arithmetic of politics Statistics and charts	78
and so ad infinitum Paradoxes, infinity	80
Sines of the times Trigonometric ratios	82
Problems	84
Problem solving	
A bit of give and take Addition and subtraction	86
The bone-setter's art Algebra	88
Time and time again Multiplication	90
Take it away! Division	92
The funny side of mathematics Strange and humorous incidents	94
and the grave side 'Epitaphs	96
"Fractally speaking," Fractal geometry	98

Notes and Solutions

Index



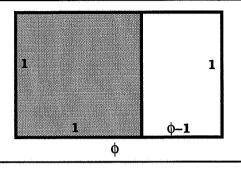
100

104

THE GREEKS GO FOR GOLD!

A special rectangle

Suppose we take a rectangle R, and inscribe a square at one end. This will leave another rectangle R'. Now suppose that R and R' have the same shape. What are the dimensions of R?



A closer look ...

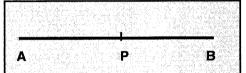
Since we are only concerned with the shape, we may take R to have length ϕ and width 1. Then R' will have length 1 (vertically) and width 1 (horizontally). Since R and R' have the same shape, $\phi/1 = 1/(\phi-1)$.

This simplifies to $\phi(\phi - 1) = 1$, or $\phi^2 - \phi - 1 = 0$.

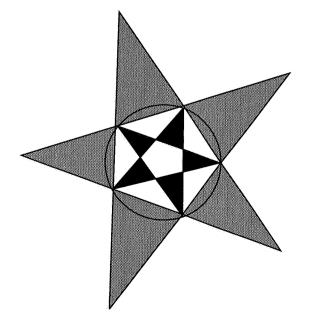
Using the quadratic formula, or a calculator, we get

$$\phi = (1 + \sqrt{5})/2 \approx 1.618...$$

The special number ϕ (= ϕ /1) is called the *golden ratio*. The Greek letter ϕ (phi) is used in memory of Phidias, an ancient Greek sculptor, who used this ratio in idealizing human proportions. The above rectangle is called the *golden rectangle*.



1. In Euclid's *Elements*, Book VI, Proposition 30 we find: If point P divides the segment AB internally in the ratio AP: PB = AB: AP, then P is said to divide AB in the golden ratio. Show how the number \emptyset occurs here.

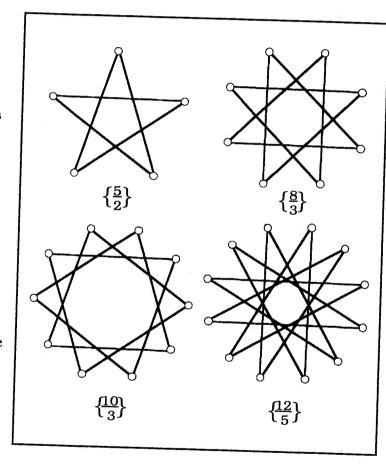


The number ϕ

The number ϕ has had a long and honourable history. The Pythagoreans not only discovered it but realized that it is irrational (or incommensurable) and embodied it in the star pentagon or pentagram, which became their secret sign. After Euclid studied its construction, the golden ratio became the object of study and application by mathematicians, philosophers, artists and architects throughout the centuries to the present day, not only for its own sake but also for its association with the ideal of beauty. One mathematician, Pacioli, referred to ϕ as 'the divine proportion'. Some of this history is graphically documented in the Walt Disney film Donald in Mathemagic Land. The mathematics of ϕ continues to fascinate those who take the time to investigate it.

Pathway to the stars

Imagine n basketballers standing equally spaced around a circle. A ball is passed from a given basketballer to every ath player in the circle until the ball returns to the original basketballer. The path traced out is a star polygon, or regular n-gram. We may assume that n and a are relatively prime (that is, they have no common factors other than 1), and that n > 2. These conditions will become obvious by substituting some simple values for a and n. Such a star polygon is symbolized by $\{\frac{n}{a}\}$. The most famous star polygon is $\{\frac{5}{2}\}$, known to the Pythagoreans as the pentagram. When a = 1, we have a regular polygon $\{n\}$; we can think of this as a special star polygon $\{\frac{n}{1}\}$.



- 1. Choosing some values of n and a, draw some star polygons of your own. Can you show that the star polygon $\{\frac{n}{a}\}$ is identical to the star polygon $\{\frac{n}{n-a}\}$? Show that if n is prime, there are $\frac{1}{2}(n-1)$ regular n-grams. What happens if n is not prime?
- **2.** What meaning do you attach to the number n for the polygon $\{n\}$? Can you attach meanings to the numbers n and a for the polygon $\{\frac{n}{a}\}$?