### contents and sample pages

| Title        | Motivational Maths  |
|--------------|---------------------|
| Author(s)    | Paul Swan           |
| ISBN/ISSN    | 978-1-86311-830-9   |
| Published by | R.I.C. Publications |

This document is copyright and has been made available with permission.

Please contact the Australian Association of Mathematics Teachers to purchase this product.

AAMT is the nation's premier organisation of mathematics educators: supporting and enhancing the work of teachers; promoting the learning of mathematics; representing and promoting interests in mathematics education.

POST GPO Box 1729 Adelaide SA 5001

PHONE 08 8363 0288

FAX 08 8362 9288

EMAIL office@aamt.edu.au

INTERNET www.aamt.edu.au



#### Foreword

Motivational Maths has been designed to enrich the mathematical experience of older students or simply enthral younger students with the seeming magical properties of mathematics. Teachers may use the ideas to introduce lessons, to finish a lesson on 'a high note', to arouse curiosity or extend the thinking of students. Alternatively, teachers may wish to copy the activities and allow students to jot down ideas or the calculations required to complete the trick. Older students should be encouraged to look a the reason behind the tricks; i.e. what makes them work? In many cases, this will provide the opportunity to discuss and develop algebraic ideas and concepts. Younger students who are not ready for algebra may simply be allowed to wonder at the magic of mathematics. Remember, the purpose of introducing a 'mathemagical' trick should not be to ballle students with the intricacies of algebra but to turn them on to mathematics and mathematics are mathematics.

2 Jone

Contents

| Teachers Notes                                    | ii - iii |
|---------------------------------------------------|----------|
| Activity Overview                                 |          |
| Outcome Links                                     |          |
| Student Self-assessment Proform                   | val      |
| Student Checklist                                 | ix       |
| Magic Numbers - Activities                        | 1-8      |
| Magic Numbers - Explanat Magic Numbers - Explanat | 9-10     |
| Think of a Number - Act Nies                      |          |
|                                                   |          |
| Properties of N. e - Ad Vities                    | 17 - 24  |
| Properties of New Explanations and Answers        | 25 - 26  |
| Calendar Al                                       | 28       |
| Algebra-based Tricks – Acti Ses                   | 27-37    |
| Algebra-based Tricks - Extranations and Answers   | 38 - 40  |
| Card Tricks - Activities                          |          |
| Card Tricks – Explanations and Answers            | 45       |
| 8 x 8 Grids                                       | 46       |
| Mixed Bag - Activities                            | 47 - 51  |
| Card Tricks - Explanations and Answers            | 52 - 53  |
| Teacher Tricks - Activities and Explanations      | 55 = 72  |

## Magic Numbers

There are several numbers that when multiplied appear to have magical properties. For example, the number 12 345 679 may be used to good effect. Simply ask a student to choose any single-digit number and their to multiply it by nine (a good way to get students to practise their nine-times table). Next, the product is multiplied by 12 345 679. To add to the mystery of the occasion the mathemagician at this point can predict the outcome prior to the completion of the final calculation.

The following example shows the trick in operation if a student volunteer chooses seven as the show-out number, then sixty-three is produced as a coult of multiplying seven by nine (7 x 9 k-63). The result of multiplying sixty-three by the magnetimber in 77 777777. It should be noted that this calculation cannot be performed on an ordinary sullator with an eight digit display so most students are suitably improved when the teacher in the results in a selection of a sixty of the shower almost instantaneously.

The project of \$3.45 679 and 9 is 111 111 111.

Therefore are langle-digit multiple of nine will produce the following result runn nnn nnn, where a represents the single-digit multiple of nine.

Where is the mathematics?

The mathematics to be derived from a trick of this kind comes from the children developing their own magic number puzzles. Once the students appreciate the principle underlying this trick they may like to make up some of their own, using one of the following magic numbers:

37 037, 15 873 or 8 547. To develop the trick requires recognising the relationship between these numbers and 111 111.

# Calendar Magic

F . Choose any month from the year and draw a 3 x 3 box around any nine dates.

| January |      |      |     |       |      |     |  |  |
|---------|------|------|-----|-------|------|-----|--|--|
| sun     | mon  | tue  | wed | thu   | fri  | 881 |  |  |
|         | 10.7 | 42.7 | 3.  | (4)   | 75   | 8 6 |  |  |
| 7       |      |      | -50 | M     | 112  | 13  |  |  |
| 14      | 1.5  | 16   | 17  | 16 40 | 19   | 2.0 |  |  |
| 21      | 22   | 23   | 24  | 25    | 24   | 2.7 |  |  |
| 28      | 29   | 30   | 31  |       | 1751 |     |  |  |

Choose the smallest number in the box.

· Add eight to it.

Multiply the result by nine.

Record your answer.

Add the nine numbers in the box.

How does your answer compare to the sum of the numbers in the box?

4+8=12

ces it work for thery month in the year?

# Magic Montes

 Work with a partner. Keep 18 while you work your 'magic' trick.

| <b>E</b> | -    | 1 2 | 200 | 23   | (C) | 6   |
|----------|------|-----|-----|------|-----|-----|
| 1        | 1    | 9 4 | 10  | NI   | 12  | 1)  |
| 14       | v    | 164 | 17  | 18   | 19  | 2.0 |
| 21       | 10.  | -   | 24  | 25   | 2.6 | 2.7 |
| 28       | 29 4 |     | 31  | 17.5 |     |     |

Example Working

- Ask your partner to secretly choose a 3 x 3 block from any. month on the calendar, and follow this procedure:
  - Add the nine numbers:

- · Write the total and show it to you.
- Using your 'Secret Solution', offer to 'read' his/her mind to find out the 3 x 3 block in the chosen month,

Mentally divide the total by 9, which will reveal the middle number in the block

Subtract 8 to determine the first number in the block.

The rest may be worked out using the sequence of the calendar.