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PREFACE 

“Mathematics: Learn, Lead, Link” is an appropriate theme for the 25th Biennial 
Conference of the Australian Association of Mathematics Teachers. In a time of 
upheaval and change at every social scale, all representative bodies and their individual 
members must learn how to manage new and diverse challenges. That learning must be 
translated into transformational leadership that inspires and supports practitioners to 
make effective changes in their local spheres. I believe that this conference is a very 
important link in the network of change that many hope will lead to a future general 
populace that is more mathematically aware and competent. 
 Among the major themes that are very publicly connected to education are national 
security, financial literacy, environmental change, STEM, the apparent failure of our 
students in international rankings, national standards and the professionalism and 
quality of our teaching force, and the continuing marginalisation of Aboriginal 
Australians. It is true that schools have a fundamental role to play in dealing with social 
problems. However, calls from the public to solve this or that ill by delivery of 
additional curriculum are multitudinous and often seem simplistic, without genuine 
understanding of the complexities of education. 
 Fortunately, our conference speakers, as a community, with diverse interests, 
affiliations and experience, have the new ideas and the vital information that can 
support transformational learning and change. Coming together as a large and diverse 
group enables us to make links to fellow educators and to share knowledge and 
innovation. It is undoubtedly true that educators today must continue to learn and act 
upon their learning, for public good, as well as personal benefit. Every individual needs 
to understand more deeply the ways in which we can act to lead others and be an 
effective part of the network of change. 
 That which encourages me greatly in this endeavour is the tremendous support that 
educators give to each other, which I hope you experience in your workplace. In the 
context of this conference, I am grateful for the willing and generous help from many 
colleagues, most of whom I have never met, in carrying out my small role in the 
proceedings. 
 That which challenges me, is how we can best extend important ideas beyond our 
community of educators, to those who influence the thinking of other groups in society. 
I am conscious then, of a responsibility to make the most of the opportunity provided 
by the conference. I must think deeply about what influence I might have as an 
educator in my particular station; what learning is most essential to be an effective 
participant, and leader, in my community. It is obvious to me that I can make many 
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links to colleagues at the conference. I believe that from these links I could develop new 
understandings that may enable me to create meaningful connections with people, and 
exert a positive influence, however small, on society at large. 
 
Neil Davis 
Proceedings Lead Editor 
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MORE THAN MATHEMATICS:  
DEVELOPING EFFECTIVE PROBLEM SOLVERS 

AMIE ALBRECHT 
University of South Australia 

amie.albrecht@unisa.edu.au 

 
Complex, loosely-defined problems encountered in both the workplace and 
everyday life demand more than technical proficiency in mathematics. They also 
require broader capabilities including formulating problems, devising and 
implementing solution approaches, creativity, teamwork, project management, and 
communication skills. Significantly, these skills are often needed for any 
challenging mathematical problem — independent of whether it originates in the 
‘real world’ or not. 
This paper explores two questions. How do we meaningfully prepare our students 
with these skills in a mathematical setting? How can we develop and broaden their 
abilities and confidence in posing and solving mathematical problems? In this 
discussion I will draw on my experiences in working as an industrial 
mathematician, training workplace-ready students, and teaching a new course 
specifically designed to build mathematical thinking and problem-solving skills in 
pre-service teachers through games and puzzles. 

Introduction 
It is a privilege to give this lecture, which celebrates and honours Hanna Neumann. 
Biographical accounts show her to be a remarkable and inspirational person, who made 
significant contributions to both mathematics and mathematics education throughout 
her distinguished career, first in Britain (1938–63) and then Australia (1963–71).  
(I wholeheartedly recommend the biography by Newman and Wall (1974) which can be 
read online.) Among her many accomplishments, Hanna was the first woman 
appointed as a professor of mathematics in an Australian university (at the Australian 
National University in 1964). Hanna was also instrumental in the formation of the 
Australian Association of Mathematics Teachers (AAMT). The great esteem in which 
both communities still hold Hanna is evident, with the AAMT and the Australian 
Mathematical Society including named lectures at their society meetings in her honour . 
 Hanna strove to show that “doing and thinking about mathematics can be joyous 
human activities” and to make mathematics accessible and valued—for both its 
intrinsic beauty and its practical application—by all (Newman and Wall, 1974). She 
believed that “the community had to be educated to create a more favourable climate 
(one in which mathematics is not feared) for the learning of mathematics—especially 
among girls.”  
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 As Hanna herself said to a joint meeting of the Mathematical Association of South 
Australia and the Australian Mathematical Society in 1971 (Neumann, 1973):  

Speaking about teaching to trained teachers makes me very conscious of our, that is the 
university teachers’, lack of training — I wish I had not got to say this! But this is by-the-
way; perhaps I have been sufficiently long occupied, indeed at times pre-occupied, with 
the teaching side of my job that this undertaking is not entirely ludicrous. 

With this firmly in mind I will discuss how we can develop, strengthen and broaden our 
students’ mathematical skills and deepen their appreciation of the power of 
mathematics by linking to both engaging real-world problems and recreational puzzles. 
I will start with inspiration from my mathematical area of Operations Research. 

Operations research: The science of making smarter decisions 
Operations research (OR) is the scientific approach to decision making. In OR, there is 
not a single technique that can be used to solve all mathematical problems that arise. 
Rather, an OR practitioner like myself will select the most appropriate technique from 
across the mathematical sciences, including mathematical modelling, probability and 
statistics, optimisation, stochastic processes, simulation and game theory. 
 Operations research is a very practical discipline. From its origins in British military 
applications during World War I, OR has expanded to find significant implementation 
in many other areas. For example, some of the special issues of the journal Interfaces, 
which emphasises the impact of OR in organisations, have focused on: 

• energy industry 
• freight transportation and logistics 
• mining 
• humanitarian applications 
• sports analytics and scheduling 
• health care 
• military applications 
• finance 
• marketing 
• forest products industry. 

This short list illustrates the breadth of OR; it would be easy to fill the page with more 
examples. (Try www.LearnAboutOR.co.uk for teacher resources of OR in everyday life.)  
 While mathematical analysis is at the heart of solving OR problems, Operations 
Research is more than mathematics. Taha (2011) comments that: 

OR is both a science and an art. It is a science by virtue of the mathematical techniques it 
embodies, and it is an art because the success of the phases leading to the solution of the 
mathematical model depends largely on the creativity and experience of the OR team. 

Broadly, the five phases of implementing Operations Research in practice are: 
1. Defining the problem and the objective(s). This is especially challenging for 

complex or ill-defined real-world problems. It usually entails observing the 
current system and comprehending a lot of domain-specific knowledge. 

2. Constructing a mathematical model, including identifying any assumptions 
and simplifications. 
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3. Solving the mathematical model, which might require mathematical techniques 
ranging from elementary to sophisticated, or computer-based approaches for 
mathematically intractable problems. 

4. Validating the model, typically by using historical data, covering a variety of 
situations, to determine if the model is an accurate representation of reality. A 
‘common sense’ check is also recommended as is careful investigation of any 
‘surprising’ solutions. Also ‘does the model solve the original problem?’. 

5. Implementing the solution or recommendations, which includes translating 
and summarising techniques, analysis, outcomes and findings into appropriate 
and usually non-technical language for the ‘customer’. 

This methodology is rarely linear and it is likely that phases will be revisited as the 
process of finding a solution evolves.  
 Industry problems1 are nearly always too complex for one person to work on. In 
addition, the multi-disciplinary nature almost always requires teamwork with 
professionals in other fields. 

Case study: Keeping trains on track and on time 
My earliest experience in tackling industrial OR problems was though my PhD research 
(2002–09), which investigated operationally feasible methods to produce integrated 
train timetables and track maintenance schedules so that, when evaluated according to 
key performance criteria, the overall schedule is the best possible. 
 A train timetable specifies a path, with timing information, for each train through 
the network. A train timetable is represented graphically with a ‘string line diagram’. 
Figure 1 is one of the earliest train timetables (1885), from Paris to Lyon, and shows 
time on the horizontal axis and distance on the vertical axis. Existing methods schedule 
track maintenance once the train timetable has been determined, which almost 
certainly produces sub-optimal solutions. 

 

Figure 1. String line diagram (train timetable) from Paris to Lyon (1885). 

 After carefully observing the manual creation of timetables in train control centres, 
talking with train controllers and analysing historical data, I was able to formulate an 
integer linear programming model to mathematically describe the scheduling process. I 

'1 The term ‘industry problems’ is used to describe problems arising from outside of academia, including from 
business, industry, government and non-corporate entities. 
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painstakingly applied a sophisticated mathematical technique to find provably optimal 
solutions but found that it was not operationally feasible for realistic-sized problems. I 
then devised a fast probabilistic computer algorithm to efficiently generate thousands 
of alternative schedules in minutes from which good solutions could be selected. I 
benchmarked by simulating and comparing with the existing manual process. I wrote 
thousands of lines of computer code. I gave presentations to both industry and 
academia, and interviews to media. I wrote reports targeted at industry, mathematical 
papers for academia, and ultimately a PhD thesis. My work contributed to a larger 
project with an expected value of $7.6 million (2006 report) to the Australian rail 
industry and which was commercialised into industry-ready software. However, the 
research had only isolated uptake in industry, partly because we neglected to fully 
appreciate both human behaviour and the organisational shift required to implement 
our work. As Taha (2011) notes, “… while mathematical modelling is a cornerstone of 
OR, unquantifiable factors (such as human behaviour) must also be accounted for.” 
 Despite the somewhat unsatisfying conclusion, this case study demonstrates the 
breadth of skills needed to meaningfully tackle challenging mathematical problems.  

Maths in careers: Enhancing job prospects 
A recent report commissioned by the Office of the Chief Scientist, Australia’s STEM 
workforce: a survey of employers, and released on 29 April 2015, found that the top 
five skills of STEM2 employees that are of highest importance to employers are: active 
learning (ability to learn on the job), critical thinking, complex problem-solving, 
creative problem-solving, and interpersonal skills. Respondents also listed skills 
important in their workplace in addition to those in the survey. The report found that 
“overwhelmingly, communication skills were most predominantly mentioned, followed 
by writing, project management, marketing, financial and leadership skills.” When 
recruiting workers, academic results were considered of far less importance than 
interpersonal skills (with nearly half of respondents rating this as very important). 
 While the importance of technical skills (which was not specifically included in the 
‘skills and attributes’ survey) was considered fundamental, more than 80% of 
employers agreed that people with STEM qualifications are valuable to the workplace 
even when their major field of study is not a prerequisite for their role. STEM 
employees were considered among the most innovative and adaptable in workplaces. 
 The study of mathematics—to whatever level—builds skills transferable to other 
disciplines and occupations. For example, studying mathematics requires the ability to 
think clearly, pay attention to detail, follow complex reasoning and construct logical 
arguments—valuable skills to have in many contexts! (See the extensive list from the 
University of Warwick (2011) of transferable skills obtained through study of 
mathematics.) 

Careers in maths: The hidden mathematician 
Job advertisements for those with mathematics and statistics qualifications rarely list it 
in the position titles. Mathematically-trained professionals work across a diverse range 
of industry, business and government sectors. The yearly ‘Maths Ad(d)s’ publication3 by 

2 Science, Technology, Engineering, and Mathematics. 
3 Maths Ad(d)s booklets can be ordered from AMSI (careers.amsi.org.au/mathsadds) or downloaded as a free PDF. 
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the Australian Mathematical Sciences Institute (AMSI) gathers together a sample of job 
advertisements for careers requiring training in mathematics and statistics. Recent 
Maths Ad(d)s include: bioinformatician, remuneration analyst, software programmer, 
data scientist, epidemiologist, energy forecaster, credit risk modeller, market 
researcher, meteorologist, behavioural scientist, operations manager, quantitative 
analyst, teacher, and groundwater modeller. For more than 101 careers in mathematics, 
see the book with the same name published by the Mathematical Association of 
America (Sterrett, 2014). 

Training our future mathematically-capable professionals 
So, how do we meaningfully prepare our students to be mathematically capable and 
workplace ready? I offer two models with which I have had experience: one at tertiary 
level and one at secondary level.  

The UniSA Mathematics Clinic 
The Mathematics Clinic was started in 1973 by the Mathematics Department at Harvey 
Mudd College (HMC) in Claremont, California, to train industry-bound mathematics 
graduates. It is a sister program to the Engineering Clinic established in the early 1960s 
by the Engineering Department at HMC and was considered to be like medical clinics 
which provide interns with hands-on real-world experience in a supervised 
environment (Borrelli, 2010). The Clinic solicits real-world open-ended problems 
(called projects) from companies and government agencies. Over 150 Mathematics 
Clinic projects have been conducted at HMC4. 
 The Mathematics Clinic5 program at the University of South Australia (UniSA) is 
based on the HMC model and is the only one of its type in Australia. It is a year-long 
team-based sponsored project undertaken by final-year mathematics undergraduates. 
It provides a rigorous research experience in tackling mathematics problems sourced 
from industry. It is primarily an educational program, although it also delivers 
products (e.g. mathematical algorithms, reports, presentations, analyses, software). 
 In 2014 the UniSA Mathematics Clinic team developed mathematical techniques 
and prototype software to aid the Australian Army in determining both the number and 
type of new land combat vehicles required to replace the existing fleet. The Clinic 
project contributed to Land 400—the largest project the Army has ever undertaken. 
The Defence Science and Technology Organisation (DSTO) was the project sponsor. 
 A UniSA Clinic team typically consists of four students, an Academic Supervisor, an 
Academic Consultant who provides specialised mathematical expertise (which in 2014 
was me), and a sponsor Liaison to monitor progress and provide domain-specific 
expertise. A student is appointed as the Project Manager; others take on leadership 
roles throughout the year, typically to lead the completion of a project deliverable. 
 The first deliverable is the Work Statement—the formal agreement between the team 
and the sponsor to accomplish certain tasks and produce certain products. It drives the 
process of defining the problem, as well as planning the management of and schedule 

4 www.math.hmc.edu/clinic/ 
5 The current UniSA Mathematics Clinic Director is Associate Professor Lesley Ward. More details at 
www.unisa.edu.au/IT-Engineering-and-the-Environment/Information-Technology-and-Mathematical-
Sciences/Maths-Clinic/ 
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for the entire project. Writing the Work Statement is often the first meaningful 
experience that students have in translating a complex real-world problem into a form 
that can be tackled mathematically. One particular challenge for the 2014 Clinic team 
was to identify how they could add value to Land 400 within the constraints of a year-
long student project. The team decided to analyse the number of vehicles required for 
three specific types of missions (screening an object from the enemy, searching for a 
target within an area, and clearing an urban area of enemies). They also reviewed and 
compared several multi-criteria decision-making methods that could be used to select 
which vehicles to purchase, as different types of vehicles are deemed more (or less) 
suitable depending on which characteristic they are judged by.  
 Preparing the Work Statement requires intensive discussions between the liaison 
and the team, and usually a site visit. Our students discovered the acronym-rich world 
of Defence and by the end of the project became conversant in the jargon—a large shift 
from the start of the year! 
 The mathematical effort required to tackle the project is initiated and undertaken by 
the students with guidance from the academic advisors. The students meet regularly for 
work sessions and to divide up the tasks. The 2014 Clinic team needed to juggle four 
sub-projects and formed smaller work-teams for some tasks. Regular meetings are also 
held with the sponsor liaison and academic staff to provide updates and to seek 
clarification or guidance. Students are coached in chairing meetings, preparing 
agendas, managing projects, interacting with the sponsor, building and maintaining 
effective teams, dealing with inevitable problems and issues, and re-negotiating the 
scope of the project if needed. 
 Clinic teams give a formal mid-project written report and presentation. The project 
culminates with a professional-quality final report, presentation to the sponsor in their 
workplace, and delivery of project outputs. Clinic teams often write academic papers 
and give conference presentations. Students are trained in developing these skills, and 
in delivering and targeting a technical message to be accessible by different audiences.  
 The Mathematics Clinic is an enriching experience that builds not only professional 
skills, but student self-confidence. It demonstrates the link between mathematical 
knowledge and application, and provides exposure to a potential employer. It was a real 
joy to watch the 2014 Clinic students blossom into self-directed, capable, industry-
ready mathematics graduates. 

School to work 
The 2010 SACE6 ‘School to Work’ Mathematics and Science programs were designed to 
partner schools with industry or universities to devise innovative ways to make maths 
and science interesting and relevant, ensure students understand the value of maths 
and science, and help to connect students with maths and science career paths.  
 I was involved in the ‘Developing Mathematicians’ project7 at St Michael’s College in 
Adelaide which provided a structured year-long program to engage Year 10 students in 
genuine, relevant and challenging mathematical research experiences and build 
transferable skills in preparation for both the SACE Research Project and their future 

6 South Australian Certificate of Education 
7 The project was led at St Michael’s College by Dr Pauline Carter, Mark Winston and Carmen Swan. Dr Amie 
Albrecht was the supporting mathematician.  
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careers. The project deliberately took on a gendered focus by bringing together two 
single-gendered classes (25 boys and 24 girls) and including a female mathematician. 
 In the first two terms, students were guided through the train planning process, 
beginning with demographic analysis of the travel demand, designing train services to 
meet demand, and constructing detailed operational train timetables. Sessions were 
loosely directed with a workbook and centred around group discussion and a hands-on 
approach. Teachers, a university mathematician and old scholars assisted as ‘guides on 
the side’. Students experienced the complexities of authentic mathematical work. 
 Having developed skills and confidence, in the second half of the year students 
worked on problems from a local steel industry in a model that parallels the 
Mathematics Clinic. The teachers and mathematician did some pre-work to develop 
simplified realistic scenarios. Students designed mathematical algorithms and 
spreadsheets to determine material requirements for orders in fencing and roofing. 
They visited the site and eventually made final presentations to the industry liaison. 
 A large part of the success of the project was the authenticity brought by engaging 
students and teachers with mathematicians and industry clients. Several of the 
students continued working on the problems beyond the end of the project. We 
observed that female students developed a more confident and resilient approach to 
learning mathematics, were more receptive to tackling a challenge, and less reliant on 
teacher direction. Students’ understanding of mathematical careers were broadened.  
 The two models I have described are significant undertakings, but hopefully they 
provide inspiration for bringing elements of the experience into the classroom. 
Authentic problems can be obtained from many places; a teacher at St Michael’s 
College had a connection with the steel company. Enlist old scholars or perhaps link 
with the Mathematicians in Schools8 initiative. Peruse the archive of stimulating 
projects from the Moody’s Mega Math Challenge9 in the US, which is accompanied by 
an excellent handbook describing the modelling process (there are other similar 
competitions, both locally and globally). Draw on problems that students encounter in 
their own lives. I also encourage you to look for engaging questions in your own 
surroundings; Dan Meyer’s 101questions site10 has an ever-growing collection of 
contributed photos and videos that provoke questions and are suitable for projects. 

Puzzles and other pastimes 
Engaging problems are not confined to the ‘real world’. The ‘Cheryl’s birthday’ puzzle 
recently captivated the attention of many, particularly via social media. It is as follows11: 

Albert and Bernard just became friends with Cheryl and they want to know when her 
birthday is. She gives them a list of 10 possible dates: 
  15 May 16 May 19 May  
  17 June 18 June  
  14 July 16 July  
  14 August 15 August 17 August  
Cheryl then whispers to Albert which month her birthday is in, and whispers to Bernard 
which day her birthday is on.  
Albert: I don't know when Cheryl's birthday is, but I can be certain that Bernard does not 
know either. 

8 www.mathematiciansinschools.edu.au 
9 m3challenge.siam.org 
10 www.101qs.com 
11 This is Rob Eastaway’s version, reworded for clarity. Source: www.robeastaway.com/blog. 
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Bernard: At first I didn't know when Cheryl's birthday is, but now I do know. 
Albert: Then I also know when Cheryl's birthday is. 
So when is Cheryl’s birthday? 

This scenario is highly unlikely to occur in real life—your students will probably tell you 
just to ‘friend’ Cheryl on Facebook and then you’ll be notified when her birthday12 
comes along!—but puzzles such as these can be as stimulating and challenging as those 
that arise from real-world contexts. Like many people, I can be engrossed solving 
Sudokus, struggling with a Rubik’s Cube or a logic puzzle like ‘Cheryl’s birthday’, 
sliding tiles in Tetris, or suspecting that the three utilities problem is impossible. Many 
board and electronic games require logical thinking or strategising—and are also fun!  
 Companies like Google and Microsoft famously ask potential employees to solve 
brainteasers and maths riddles for a good reason; these puzzles require the types of 
‘thinking skills’ that employers are looking for. So, can we intentionally develop these 
mathematical thinking skills in our students by using puzzles? 

Puzzle-based learning 
A few years ago, I was inspired by the puzzle-based learning approach of Michalewicz 
and Michalewicz (2008) which “focuses on getting students to think about framing and 
solving unstructured problems (those that are not encountered at the end of some 
textbook chapter)” with the purpose of increasing “the student’s mathematical 
awareness and problem-solving skills by solving a variety of puzzles and reflecting on 
their solution processes” (Meyer et al., 2014, p. ix). As the authors point out, the 
educational use of puzzles is not new, with a long history preceding that of their work 
and 20th century champions such as Gyorgy Polya and Martin Gardner. However, the 
puzzle-based learning course (currently taught at the University of Adelaide, where  
Z. Michalewicz is Emeritus Professor in Computer Science) was the first structured 
course using puzzles that I had seen, with a syllabus organised around problem-solving 
techniques and various mathematical topics. Students in the course at the University of 
Adelaide are assumed to have knowledge of SACE Stage 2 Mathematical Studies but it 
is not a prerequisite. Details of how the course runs are in Falkner et al. (2010). 

Training our future teachers 
At about the same time that I discovered puzzle-based learning, I was reflecting on the 
way in which we at UniSA teach mathematical content (as distinct from pedagogy) to 
our pre-service primary and middle teachers who choose mathematics as a 
specialisation, and whether it exemplifies the types of experiences I want them to have.  
 The mathematical prerequisite for entry into our primary and middle teaching 
degree is one semester of Year 11 mathematics (as a result of completing the SACE, 
although some students have done more mathematics). Despite having chosen it as an 
area of specialisation, many students describe themselves as lacking confidence or 
experiencing anxiety when doing mathematics—especially when tackling problems that 
are unfamiliar or challenging. 

12 Cheryl’s birthday is July 16. 
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The importance of being stuck 
In my experience, most students associate making mistakes and being stuck with an 
inability to do mathematics. In contrast, professional mathematicians spend much of 
their time quite comfortably feeling unsure of the next step. This is often hidden from 
students as Mason et al. (2010, p. ix) describe: 

Elegant solutions such as are found in most mathematics texts rarely spring fully formed 
from someone’s brain. They are more often arrived at after a long and tortuous period of 
thinking and not thinking, with much modification and changing of understanding along 
the way, but most beginners do not realise this. … Elegance can come later. 

 I want my students to feel stuck. I am glad when they are. Research about the brain 
shows that “when students make a mistake in maths, their brains grow, synapses fire, 
and connections are made. This finding tells us that we want students to make mistakes 
in maths class and that students should not view mistakes as learning failures but as 
learning achievements” (Boaler, 2015, p. xix). Encouraging our students to develop a 
growth mindset (‘the more they work the smarter they will get’) rather than a fixed 
mindset (‘some people are naturally good at maths and some are not’) is key in their 
mathematical development. It is important though, that this struggle is productive. We 
can assist by equipping our students with an awareness of the different phases and 
processes that take part in mathematical thinking, as well as acknowledging and 
discussing their emotional responses—both negative and positive. 

A course in ‘Developing Mathematical Thinking’ 
In 2014 at UniSA we offered a new elective course to pre-service primary and middle 
teachers called ‘Developing Mathematical Thinking’. In its design, I drew together 
many of the elements I have already elaborated on—stimulating curiosity, promoting 
mathematical communication, developing confidence, increasing problem-solving 
skills—and an intention to use mainly puzzles, some of which are ‘hands on’. Of 
particular interest were ‘low-threshold, high-ceiling’ activities “which pretty well 
everyone in the group can begin, and then work on at their own level of engagement, 
but which [have] lots of possibilities for the participants to do much more challenging 
mathematics” (McClure, 2011). (The NRICH Project13 is a good source of activities.) 
 To articulate mathematical processes and phases of work, the course rests heavily on 
the framework provided in the book Thinking mathematically (Mason et al., 2010). 
Each week is dedicated to one or more themes. Students work, mostly in groups and at 
their own pace, on problems that require a range of mathematical techniques but that 
are purposely selected by me to reinforce the week’s themes. I will occasionally teach a 
specific mathematical concept to the whole class, but it is more likely that students will 
teach each other as needed. The weekly themes include: 

• Specialising (trying specific examples to get to grips with a problem) and 
generalising (detecting a pattern that holds for a wide class of specific cases). 

• The Entry phase in which we work to understand the problem. 
– What do I know (from the question or from experience)? 
– What do I want? To find an answer? To prove something? 

13 nrich.maths.org 
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– What can I introduce? Definitions, notation, diagrams, tables, physical 
models, other ways to systematically record work. 

– Framing our own questions (for example, using 101qs.com as starters). 
• The role of intuition. 
• Strategies for ‘getting unstuck’. 
• Working systematically to detect patterns or expose cases for which a theory 

might not hold. 
• The Attack phase in which we try to solve the problem. 

– Making conjectures. 
– Justifying and convincing—yourself, a friend, an enemy. 
– What it means to prove something and why we need proof. (Detecting a 

pattern that holds for a few cases is not enough!) 
• The Review phase which includes checking and extending work. 
• Writing to record your thinking. Writing to explain your work to someone else. 

We discuss these themes in class, and students reflect on them in their formative and 
summative assessment work. Although I could elaborate on many elements of this 
course, I will conclude by describing two—a small weekly ‘starter’ and the student-
selected major projects. 

Weekly starter: Exposing multiple problem-solving approaches 

To encourage exploration of multiple valid ways to solve a problem and to promote 
mathematical discussion, each week starts with a ‘visual pattern’, usually drawn from 
Fawn Nguyen’s site www.visualpatterns.org. An example is shown in Figure 2.  
 

 
 

Figure 2. Visual pattern. 

Students work individually on the following questions for about five minutes. 
• Draw the figure in the next step. 
• How many squares are in the figure you just drew? 
• How many squares are in Step 43? 
• What is the equation for this pattern? (How many squares in Step n?)  

Students then discuss with their neighbours to help improve their approach. We then 
gather together many different approaches as a class, with students sharing their 
reasoning. Examples are shown in Figure 3. Each equation can be algebraically shown 
to be equivalent to 4n – 1. We equally celebrate incomplete and complete approaches. 
 

Step 1 Step 2 Step 3
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Equation: 3+4(n – 1) Equation: 2(2n) – 1 

Equation: 1+2n+2(n – 1) Equation: (2n)2 – (n – 1)2 – n2 – 2n(n – 1) 

Figure 3. Four possible approaches to the equation for the pattern in Figure 1. The shading is 
intended to convey the way in which the pattern grows or the figure can be decomposed. 

Student projects 

The project is a major body of work, drawing together concepts from the entire course. 
It is an in-depth investigation by an individual student or pair of students on a topic of 
their own choosing. The project comprises several structured activities over the 
semester which together are worth more than half of a student’s final grade. 
 Students discuss their choice of topic with me in Week 5. I provide a range of 
possible ideas and students can also propose their own. Here is a selection from 2014: 

• Grid-based logic puzzles like Sudoku. How many different puzzles are there for 
a given grid size? How are they created to ensure only one solution? What are 
the best solving strategies? 

• Board and card games like the Game of SET in which the goal is to form SETs 
where each attribute is ‘all-same’ or ‘all-different’ across three cards. One 
student investigated the maximum number of cards that do not contain a SET.  

• Mathematical art like fractals, and algorithmic drawing in which artwork is 
created by following a sequence of rules (e.g. turn 90 degrees clockwise and 
draw a line with length from a pre-specified list). What are the rules that 
determine if the drawing is a closed loop or has other interesting properties? 

• Physical puzzles like the Tower of Hanoi. What is the minimum number of 
moves required for n disks? How does this change if the number of towers 
changes? What if the rules for placing disks on towers are altered? 

• Pattern and algebra-based questions like the Leap Frog Puzzle or extending the 
question ‘How many squares on a chessboard?’ to triangular grids.  

 In Week 8 students obtain feedback on a draft report from me and via peer review 
(which is supported in various ways). The purpose of the draft is to help develop and 
distil ideas; uncover any flaws in the problem-solving work; practice mathematical 
writing; and enable mid-course corrections, if needed. It encourages the process of 
revising existing work and incorporating new work. Students meet again with me in 
Week 10 to discuss their draft. The polished final report is submitted in Week 14 and 
accompanied by a final 10-minute oral presentation to the class. 
  Students are trained in giving mathematical talks through weekly smaller talks 
designed to progressively build skills and confidence. Students start by ‘presenting’ at 
their desks to a friend and with the support of their notes. They gradually advance to 
presenting at the whiteboard, to classmates they might not know, with props and 
carefully chosen examples. The length of the talks increases incrementally. By the time 
students give their final presentations, they are experienced at delivering quality talks. 
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 While it is too early to measure the impact that this course has on their further 
mathematics study, students’ reflections show the effects they most valued: “I was 
encouraged to use a variety of strategies to complete tasks and extend my thinking to a 
higher level”, “I was constantly challenged but never felt I was out of my depth”, “The 
course has developed my math knowledge and expanded it to approach problems 
differently” and “Working in groups not only broadened my knowledge but it also made 
me understand some other ways in which different people think”.  
 For me, helping our prospective mathematics teachers develop into enthusiastic, 
confident and capable problem solvers gives me both great satisfaction and optimism 
for the impact they will have on their own students in the future. 

References 
Australian Mathematical Sciences Institute (2015). Maths ad(d)s: A guide for students to the job market 

2014/15 (17th Edition). Retrieved 6 May 2015 from http://www.careers.amsi.org.au/mathsadds 

Boaler, J. (2015). What’s math got to do with it? (2nd ed.). New York: Penguin Books. 

Borrelli, R. (2010). The doctor is in. Notices of the AMS, October, 1127–1129. 

Deloitte Access Economics (2014). Australia’s STEM workforce: a survey of employers. Retrieved 30 
April 2015 from http://www.chiefscientist.gov.au/2015/04/occasional-paper-stem-skills-in-the-
workforce-what-do-employers-want 

Falkner, N. J. G., Sooriamurthi, R. & Michalewicz, Z. (2010). Puzzle-based learning for engineering and 
computer science. IEEE Computer, 43(4), 20–28. 

Mason, J., Burton, L. and Stacey, K. (2010). Thinking mathematically (2nd ed.). Harlow, UK: Pearson 
Education Limited. 

Sterrett, A. (Ed.) (2014). 101 careers in mathematics (3rd ed.). Washington DC: Mathematical Association 
of America. 

McClure, L. (2011). Using low threshold high ceiling tasks in ordinary classrooms. Retrieved 7 May 2015 
from: nrich.maths.org/7701 

Meyer, E. F., Falkner, N., Sooriamurthi, R. & Michalewicz, Z. (2014). Guide to teaching puzzle-based 
learning. London: Springer-Verlag. 

Michalewicz, Z. & Michalewicz, M. (2008). Puzzle-based learning. Melbourne: Hybrid Publishers. 

Neumann, H. (1973). Teaching first year undergraduates: Fads and fancies. The Australian Mathematics 
Teacher, March, 23–28. 

Newman, M. F. & Wall, G. E. (1974). Hanna Neumann. Journal of the Australian Mathematical Society, 
17, 1–17.  

Taha, H.A. (2011). Operations research: An introduction (9th ed.). New Jersey: Pearson Education. 

University of Warwick. (2011). Transferable skills. Retrieved 30 April 2015 from: 
www2.warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/general/overview/transferableskills 



 

MATHEMATICS: LEARN, LEAD, LINK © AAMT 2015 
20 

LINKING COMMUNITIES OF RESEARCH AND 
PRACTICE IN MATHEMATICS EDUCATION 

MERRILYN GOOS 
The University of Queensland 

m.goos@uq.edu.au 

 
This paper explores different ways in which researchers and teachers can work 
together to develop new knowledge in mathematics education. A framework for 
analysing researcher–teacher relationships is presented and then used to compare 
ways in which I have worked with teachers in three research projects that differed 
in terms of (1) how the relationship was initiated, (2) how roles and relationships 
were negotiated, and (3) who chose the research topic and research questions. 
Through this comparison I hope to stimulate professional conversations about the 
possibilities and challenges of researcher–teacher collaboration. 

Introduction 
Most university-based mathematics educators would claim that their research is 
motivated by a desire to enhance the quality of mathematics teaching and learning in 
schools—yet education research is often criticised for its lack of impact on, and 
relevance to, classroom practice. A second criticism of research is that it often excludes 
teachers from decision-making about the research project, reflecting the unequal 
relationship between researchers and teachers who participate together in classroom 
based studies. This so-called “research–practice gap” has sometimes been explained by 
reference to the different practices that researchers and teachers use to understand and 
improve teaching and learning, and the different forms of knowledge that result from 
these practices. Formal research seeks to develop generalisations about educational 
phenomena, and these theoretical generalisations can seem far removed from the 
immediate needs of teachers who seek to address practical day-to-day problems 
(Wiliam, 2003). This tension between the different aims of formal research and 
teachers’ practical inquiry is also evident in the asymmetries of power between 
researchers and teachers, since it is most often teachers who are co-opted into the 
research agenda of university academics (Heid et al., 2006). 
 Instead of dwelling on the “research–practice gap”, I want to encourage participants 
in this conference to think about how researchers and teachers can work together to 
develop both theoretical and practical knowledge in mathematics education. To do 
this, I will outline a framework for describing different types of researcher–teacher 
relationships that asks (1) how and why a research partnership is initiated, (2) how 
roles and relationships are negotiated, and (3) who chooses the research topic and who 
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ultimately benefits from the research. I will use this framework to compare and critique 
ways in which I have worked with teachers in three different types of research projects, 
illustrating three different ways of linking communities of research and practice. 

Learning as social practice 
The idea of communities of practice, introduced by Wenger (1998), can help build 
understanding of the professional work of researchers and teachers. A community of 
practice is characterised by mutual engagement of participants, negotiation of a joint 
enterprise (such as teaching mathematics in a primary or secondary school), and 
development of a shared repertoire of resources (language, tools, theories, rituals) for 
making meaning of practice. Mathematics teachers in schools and mathematics 
education researchers based in universities would claim membership of related, but 
distinct, communities of practice. Any community has “insiders” and “outsiders”, but 
Wenger writes of the various ways in which communities can be connected across the 
boundaries that define them. 
 One form of connection is described as a boundary encounter. The briefest is a one-
on-one conversation between two individuals from different communities to help 
advance the boundary relationship. For example, a teacher participating in a 
professional development workshop presented by a university researcher might 
approach the presenter afterwards to ask questions or discuss ideas for practice. A 
more sustained encounter involves immersion in the practice of another community via 
a site visit, such as when a researcher visits a school over a period of weeks or months 
to collect classroom data. Both of these cases involve only one-way connections 
between communities. A two-way connection can be established when delegations 
comprising participants from each community are involved in a boundary encounter. If 
such an encounter provides a forum for mutual engagement, then a new boundary 
practice starts to emerge and becomes a longer-term way of connecting communities in 
order to coordinate perspectives or to resolve common problems. 
 Another form of connection involves creation of a periphery that makes the 
boundaries between communities more permeable. People who do not intend to 
become full members of a community can nevertheless engage peripherally in some of 
the community practices. 
 I will use the notions of boundary encounters and peripheries to identify 
characteristics of productive collaborations between researchers and teachers when 
working on mathematics education projects. 

A framework for analysing teacher–researcher relationships 
Table 1 shows the framework I developed with colleagues to analyse teacher–researcher 
relationships in conducting joint research projects (Novotná & Goos, 2007). This 
framework emerged from discussions between researchers and teachers over several 
conferences of the International Group for the Psychology of Mathematics Education. 
 An important question to consider in terms of beginning the researcher–teacher 
partnership is how teachers enter into this process and who initiates the research. At 
times, a university-based researcher seeks out teachers to participate in a project that 
has already been planned. Occasionally a partnership might be initiated by a teacher 
who seeks out a university-based researcher. Alternatively, teachers could be 
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encouraged or required by a school administration or government education 
department to enter into a university-based research project. In all these instances it is 
worth considering “why” as well as “how” such research partnerships are initiated.  

Table 1. Framework for analysing researcher–teacher relationships. 

Beginning the partnership Participants Purposes of the research 

Why? 
Researcher motivation 
Teacher motivation 
How? 
Researcher seeks teacher 
Teacher seeks researcher 
Education system selects 
participants 

Roles & expectations 
Language & communication  
of findings 
Trust/relationships 
Communities & asymmetric needs 

Topic (who chooses?) 
Research questions 
(whose?) 
Benefits (for whom?) 

 
 Other questions relate to how the participants will interact and the purposes of the 
research. The extent to which roles are shared between teacher and researcher is an 
issue: there may be benefits and disadvantages in either maintaining strong role 
separation or sharing/swapping roles (teacher-as-researcher or researcher-as-teacher). 
However roles are determined, expectations need to be made clear from the start as a 
foundation for building trust and mutual respect. Because these two communities use 
and value different forms of language, some thought needs to be given to how to 
communicate the findings of research to non-researcher audiences. The purposes of the 
research may depend upon how the partnership is initiated, since this often influences 
the choice of topic, negotiation of research questions, and realisation of any benefits for 
theory, practice, or policy development. 

How have I worked with teachers in my own research? 
To investigate the question driving this paper—How can researchers and teachers 
work together to develop both theoretical and practical knowledge in mathematics 
education?—I used the framework shown in Table 1 to analyse the funded research 
projects I have conducted since beginning my PhD research study. I eliminated projects 
that did not involve interaction with school teachers, for example, projects investigating 
learning and teaching in higher education where the teachers were academic 
colleagues. This left a list of 16 projects from 1994–2015, involving teachers in more 
than 150 schools. I developed an analytical matrix that partially categorised these 
projects along two dimensions of the framework presented in Table 1, “Beginning the 
partnership” and “Purposes of the research”; that is, I assigned projects to the matrix 
cells based on how the partnership was initiated and who chose the topic and research 
questions. The next step was to “fill in” the cells with more detail about the third 
dimension of the framework, “Participants”. To do this, I described participant roles as 
either separate, shared, or dual (if the researcher also had a role as a teacher educator 
or professional developer); developed a proxy indicator of relationships in terms of the 
frequency and duration of researcher–teacher interactions; and indicated who 
communicated the findings to research and professional communities in the form of 
publications and conference presentations. 
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Figure 1. Analytical matrix. 
(R=researcher, T=teacher, RQ=research question) 

 A simplified version of the resulting matrix is presented in Figure 1. It identifies four 
clusters of projects. For the purpose of this paper I chose not to analyse the cluster 
comprising evaluation projects commissioned by government agencies for which I had 
no part in defining the topic or research questions. I then selected one project from 
each of the remaining clusters, and labelled them A, B and C. These projects illustrate 
the three approaches I have used to work with teachers on classroom-based research. 

Project A: Research with pre-service and beginning teachers 
The project 

The first project is typical of research conducted by mathematics teacher educators 
with their pre-service students. This was a longitudinal study conducted in two waves, 
from 2000–2004 with successive cohorts of my own teacher education students (Goos 
& Bennison, 2008), with a follow up study from 2006–2008 in which some graduates 
from the first study participated as beginning teachers (Goos, 2014). The aims were to 
analyse processes through which a technology-enriched community of practice was 
established and maintained in the pre-service teacher education program, and to 
identify and analyse factors influencing the use of technology in mathematics 
classrooms. To address the first aim, I analysed bulletin board discussions between the 
pre-service teachers during and after the teacher education program. To address the 
second aim, I carried out longitudinal case studies of selected participants during their 
practicum sessions and in the early years of their professional experience after 
graduation. 

The researcher–teacher relationship 

This researcher–teacher partnership was initiated as soon as the pre-service students 
enrolled in my course and therefore became prospective research participants. I invited 
all my students to participate and explained that the case study component of the 
project would continue after they graduated.  
 There was no sharing of teacher and researcher roles amongst participants, but role 
boundaries became blurred in another way in that I had the dual roles of teacher 
educator and researcher. While participation was voluntary (in keeping with the 
University’s ethical guidelines for research), it is possible that students’ participation 
was motivated by their relationship with me as the teacher-educator. Despite the 
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protection provided by ethics approval processes it can be difficult in these 
circumstances to negotiate the power relationship that exists between the researcher 
and the researched. Thus, expectations regarding participant roles—beyond the broadly 
defined activities outlined in the research information sheet and consent form—were 
never explicitly discussed. With regard to communicating the findings from the 
research, although I often helped the pre-service teachers to publish their technology 
integration work in professional journals (e.g., Quinn & Berry, 2006), I did not take 
advantage of opportunities for them to share their research experiences with a wider 
audience. Instead, I filtered their experiences through my own research perspective 
when I communicated findings from this project to the research and professional 
communities.  
 The purposes of the research arose from my experiences of teaching previous 
cohorts of students and my observations of the potential for technologically 
knowledgeable pre-service and beginning teachers to act as change agents in schools. 
This was my own motivation for the project. Thus the teacher-participants 
unknowingly influenced the topic and research questions without having any direct 
input into their formation. Several of these beginning teachers later approached me to 
volunteer for other research projects, which may indicate they gained some benefit 
from participation. 
 I would describe this researcher–teacher relationship as one where the researcher-
as-teacher-educator is a more experienced member of the community of professional 
practice, while the pre-service and beginning teachers are newcomers (Goos & 
Bennison, 2008). Thus the relationship is concerned with helping pre-service teachers 
to gain entry to a professional community of mathematics teaching. 

Project B: Research-based professional development 
The project 

This one-year professional development project was commissioned by a government 
department of education in 2009 (Goos, Geiger & Dole, 2014). Its purpose was to 
support teachers to embed numeracy across the middle years curriculum. The research 
aims of the project were to investigate changes in teachers’ instructional practices, 
personal conceptions of numeracy, and confidence in numeracy teaching. 
 Twenty teachers in ten primary and secondary schools participated in the study, 
working through two action research cycles of numeracy curriculum implementation. 
The research team provided three whole-day professional development workshops 
throughout the year to support teachers’ planning and evaluation, and visited teachers 
in their schools on two occasions between the workshops to offer further advice and 
feedback. The research data comprised surveys of numeracy teaching confidence, 
workshop tasks that elicited teachers’ developing understanding of the numeracy 
model, lesson observations, interviews with teachers and their students, curriculum 
planning documents, and student work samples.  

The researcher–teacher relationship 

The researcher–teacher partnership was initiated by the government education 
department that recruited schools to participate. As a result, the research team did not 
meet the teachers until the first professional development workshop. It appeared that 
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most of the teachers had volunteered to participate, and most seemed interested and 
engaged throughout the year of the project. 
 Clear role distinctions were maintained by participants who were either teachers or 
researchers. However, the researchers filled dual roles as professional developers who 
were expected to bring about change in teaching practice. Findings from this project 
were communicated to the research community via conference presentations and 
publications (e.g., Goos, Geiger & Dole 2011, 2014). The research team also invited four 
teachers each to serve as lead author of a set of four articles that were published 
together in The Australian Mathematics Teacher, one of AAMT’s professional journals 
(e.g., Willis et al., 2012). The project thus gave these teachers a voice and provided 
them with opportunities to share their practical inquiry with colleagues in other 
schools.  
 The broad purposes of the research were determined by the education department 
and the deliverables were made explicit through a contractual agreement between the 
department and the university. However, the pedagogical focus of the project was 
jointly determined by the researchers and teachers. Thus, although the projects’ broad 
research questions were defined by the researchers, the teachers identified their own 
personal goals in exploring different aspects of numeracy. Our interview data show that 
more than half of the teachers claimed they now had greater understanding of the cross 
curricular nature of numeracy.  
 In this second project, the researcher–teacher relationship could be described as a 
series of one-way immersive boundary encounters between two communities, because 
the researchers immersed themselves in the practices of the professional teaching 
community via site visits to schools. In addition, some teachers also engaged 
peripherally in publishing practices more common to research communities when they 
co-authored articles with the researchers in mathematics teaching journals. However, 
although there was some permeability in the boundaries around the two communities, 
no boundary practices emerged that could connect the researcher and teacher 
communities beyond the life of the project. 

Project C: A collaborative research relationship 
The project 

The third project is a long-term partnership between myself and a secondary school 
mathematics teacher. The partnership began in 1994 with my PhD research, most of 
which was conducted in this teacher’s classroom over a two year period. One of the 
aims of my doctoral study was to investigate the teacher’s role in creating a classroom 
culture that supported students’ mathematical thinking and sense-making (see Goos, 
2004). I used the concept of a classroom community of inquiry to help me understand 
how this teacher structured learning activities and social interactions to develop his 
students’ mathematical thinking. 

The researcher–teacher relationship 

After I completed my doctoral research, the teacher enrolled in his own PhD under my 
supervision. During his candidature he also took an active and high profile role in 
professional associations, culminating with his election as President of the Australian 
Association of Mathematics Teachers. In 2005, he embarked on a career change, 
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leaving his job as a school teacher to take up a tenurable position as a university 
academic. We continue to collaborate on other research projects (e.g., Project B in this 
paper). The analysis that follows draws on an extended conversation that we recorded 
in preparation for writing a journal article about this researcher–teacher relationship 
(Goos & Geiger, 2006). 
 Initiation of the partnership came about when the teacher and I were introduced to 
each other by our former pre-service teacher education lecturer, who had become my 
PhD supervisor. At the time, the teacher had recently completed a Masters degree and 
was motivated to participate in my research by his desire to resume regular 
professional conversations with a university researcher. Thus there was some equity in 
the partnership from the start in terms of its initiation and our underlying motivations. 
 As participants, although we agreed to keep our roles separate, the nature and 
distinctiveness of these roles changed over time as we developed mutual trust. At the 
time I was a novice researcher as well as a novice teacher, and thus I was conscious of 
the kind of respectful relationship that needed to be established with this experienced 
teacher if the research was to be productive. The teacher explained how he valued my 
presence as someone who “only ever asked me why I was doing things, you never made 
any judgmental comments” (Goos & Geiger, 2006, p. 37). However, my efforts to 
understand did result in post-lesson discussions that led him to modify his teaching 
plans for the next lesson—thus making me more of a participant than a passive 
observer.  
 We explicitly negotiated issues related to power and what each of us wanted to 
achieve out of the collaboration as we began to write and present papers together at 
research conferences. He believed that “teachers’ voices … have to be heard if research 
is going to make a difference to teaching and learning in schools” (Goos & Geiger, 
2006, p. 38), and he saw jointly authored publications as acknowledging his equal 
contribution to creation of the new knowledge reported therein. Likewise, I gained 
credibility with practising teachers through joint presentations at professional 
development conferences where he was well known because of his leadership and 
advocacy roles in teacher professional associations. This was how we introduced each 
other into the distinct sub-cultures of mathematics education to which we separately 
belonged—the community of educational researchers and the community of teachers—
and how we learned to communicate with different audiences using the language of 
research and the language of practice. Thus our goals and needs, although different, 
were mutually recognised and valued. 
 Although the purposes of the research were determined initially by my interests in 
that I proposed the initial topics and research questions, this situation evolved into a 
more equal arrangement when the teacher enrolled in his own PhD under my 
supervision. In later projects we have jointly determined the research focus and 
questions, with mutually beneficial outcomes. 
 This third example shows how a two-way connection developed between researcher 
and teacher. As well as immersing ourselves in the practices of each other’s 
communities, for example, by giving joint presentations at both research and 
professional conferences, we also created boundary practices that explored the 
different perspectives of each community. Our conversation about what we learned 
through working at the boundary is one example of such a practice. We also took 
advantage of our leadership roles in national mathematics teacher and mathematics 
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education research organisations to share and discuss our boundary practices with 
members of our respective communities. 

Conclusions and implications 
This paper has considered how researchers and teachers could work together to 
develop the kinds of knowledge most valued by their respective communities of 
practice. Different kinds of connections between communities were discussed, 
including boundary encounters that might lead to longer lasting, two-way boundary 
practices, and peripheral participation by members of one community in some of the 
practices of another community. I used three of my own research projects as examples 
of these links. Project A, with pre-service and beginning teachers, involved a one-way 
connection where I made site visits to schools. My overall aim was to help the 
participants gain entry to the community of professional teaching practice. Project B, a 
professional development study with practising teachers to embed numeracy across the 
curriculum, also involved one-way connections and school site visits. Another form of 
connection in this project was the peripheral participation of teachers in some of the 
publishing practices that are common in the research community. Only in Project C 
was a two-way connection established between the teacher and researcher communities 
through the development of long-term boundary practices. This project was 
characterised by mutuality of the researcher’s and teacher’s motivations, roles, and 
purposes, and complementarity of their expertise and knowledge. 
 It is interesting to think about how Projects A and B, or other projects like them, 
could grow into the more equitable type of researcher–teacher partnership evident in 
Project C. For example, it is possible that research partnerships with my pre-service 
students and graduates will continue to evolve over time towards mutually agreed 
goals, or at least goals that are mutually beneficial. It is more difficult to work towards 
shared goals and decision-making in projects initiated and funded by education 
systems that define the research or professional development focus and select the 
schools that will participate. Instead, it may be possible for the researcher to develop 
longer lasting relationships with funding bodies that lead to follow up projects with 
broader scale and focus. This has been the case with Project B, where in subsequent 
projects I have worked with school principals, curriculum leaders, education systems 
and teacher registration authorities to develop numeracy curriculum frameworks and 
teaching resources that can be shared with larger numbers of teachers throughout an 
entire educational jurisdiction. 
 The framework shown in Table 1 could be used as a template for designing research 
projects that are beneficial for the communities of mathematics teachers and 
mathematics education researchers, and for negotiating researcher–teacher 
relationships and the expectations that these entail. The comparison of the three types 
of research project I presented above could also stimulate professional conversations 
within and between these two communities about the possibilities and challenges of 
researcher–teacher collaboration. To get the conversation started, I offer the following 
two questions: 

1. In communicating the findings from research with teachers, who should speak 
for whom and to whom? 
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2. What conditions are needed for researchers and teachers to explore each other’s 
roles and understand how their respective communities develop theoretical and 
practical knowledge? 

These questions invite readers to consider how researchers and teachers might both 
develop professional knowledge and “principled practice” (Heid et al., 2006, p. 78). 
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LINKING IT ALL TOGETHER  
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This paper is a summary of the opening keynote at the AAMT conference 2015. It 
brings together various connections within mathematics through considering the 
use of rich tasks. 

Introduction 
Thank you so much for inviting me. I am delighted to be in Australia again, and in 
Adelaide, and I am greatly looking forward to conversations over the next few days 
about the work that you are doing in mathematics education.  
 It was over a year ago, at the BCME conference in Nottingham, when Will invited 
me. At that time I was the Director of NRICH14—a project which I know many of you 
already use. Since then I have changed job so the focus of my talk today will be slightly 
different from the title and abstract that I originally sent. In this plenary then I would 
like to combine some of what I had intended to talk about, with some new thoughts that 
have come to me as a result of my changed role. 

Learners’ views 
Before I do that I am going to show you some short excerpts of English and Scottish 
children, mostly primary learners but not exclusively, talking about their experiences of 
mathematics. These film clips originated in a research project I did where I was 
interested in finding out what came to mind when learners thought about their 
mathematics lessons. I asked them several other questions too, which I will share with 
you later, but for now here are three or four short pieces for you to watch.  
 Whilst you are watching them, I would like you to consider two questions: firstly 
what are these children’s views of mathematics, and secondly, if you asked your own 
students the same sort of question, would you get the same sort of responses or 
something different?  
 Mathematics to them is a set of mostly unconnected content. They talk about having 
‘done’ fractions or decimals, for example. I put this somewhat down to the Numeracy 
Project in the UK, in which the year’s plans were set out in unrelated chunks so learners 

14 NRICH: nrich.maths.org 
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might do some work on multiplication on Mondays and Tuesday and then swap to, say, 
identifying polygons for the rest of the week. Little attempt was made to tell any stories 
that connected the mathematics. Not only does this lead to a rather random view of the 
subject, we also know from the work of Brown and Askew (2001) that the most 
successful teachers look for and make connections in their teaching. So it is not 
surprising that the children in my study thought of mathematics as an unconnected set 
of topics. And mostly arithmetic, at that.  
 There were a handful who talked about using mathematics to solve problems, but 
again this was quite rare. Mostly mathematics is seen to be about learning to replicate 
or identify or calculate—although later when I did ask them if they knew any grownups 
who used mathematics, many said yes; teachers and people who go shopping! In the 
UK our assessment criteria use the words fluency and reasoning and these are often 
interpreted very narrowly by teachers.  
 The learners have a clear idea of how ‘good’ they are at the subject and know which 
ability group they fit. No Dweck growth mindset there! (Dweck 2006). But you will 
notice that they are not unhappy—they are quite satisfied with their lessons although in 
hundreds of hours of film, no-one ever got really excited when talking about their 
mathematics experiences! There is something here about expectations of just getting 
through what they have to do—if they are in year 4 there is a year 4 program to be got 
through and in a way that is their job as a student. I think, of everything, this is the bit 
that saddens me most. I suspect if I had asked them to tell me about almost any other 
subject—art, music, science, history—they would have been able to recall something 
creative that they did, something that was personal to them, perhaps creating a picture, 
playing a piece of music with others or dramatising a historical event. But hardly 
anyone talked about any personal mathematics they had done, discovered or been 
proud of. No-one thought of mathematics as a creative subject, or one in which they 
could have some personal input, whereas we know that the creativity of 
mathematicians has led to solutions of some of the world’s problems.  

Comparing curricula 
If we look at the Australian curriculum, we see that these ideas—creativity, enjoyment, 
confidence, connectedness, fluency, reasoning, problem posing and solving—are all 
embedded. Likewise in the UK, although we need two paragraphs to differentiate 
between aims and purpose. Nevertheless these ideas are thought important, and indeed 
when you read curriculum documents from across the world they all say much the 
same.  
 For me ‘connectedness’ is what mathematics is all about, though I would suggest 
that you are really lucky as a learner if you are let into that secret early on in your 
education. I am going to look at four ways in which mathematics can be thought of 
being connected, and these relate both to the curriculum aims and to our reactions to 
those film clips. And I hope you will be happy to do some mathematics along the way.  
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Making connections 

Task 1: Reach 100 
http://nrich.maths.org/1130 

 

Make four two-digit numbers by reading top to bottom and left to right, then add them 
all up. Let us see who has made the largest sum? And the smallest? 
 I am hoping that this has provoked you into thinking about some questions you 
would like to ask. Here are some possibilities: 

• What is the highest possible sum (and how do you know)? 
• What is the lowest possible sum (and how do you know)? 
• Can you make all the ones in between (what are your strategies and if they are 

not all possible why not?) 
• Can you find a strategy for finding any sum? (e.g., work backwards?) 
• What would happen of you changed the size of the grid? 

 Firstly the connection between fluency and reasoning. I am not sure how this is 
interpreted here, but in the UK it is very often taken to distinguish between algorithmic 
and factual recall speed on the one hand, and developing or following arguments on the 
other. My take on this is that you can and should promote them simultaneously. If we 
consider what knowledge and processes were need to get going on this task, we can see 
that here is an activity that supports fluency in the most restricted sense of the word, in 
that there is a lot of addition of two digit numbers involved. However to answer any of 
the subsequent questions there will, in addition to some trial and error, be some 
reasoning about place value and the relative importance of the position of the digits. 
 The phrase ‘low threshold high ceiling’ originated with Seymour Papert (1980). It 
means something that is accessible to all but with inbuilt challenge, and he used it to 
describe Logo. The phrase has been adopted by NRICH because it nicely describes 
these tasks which are suitable for a whole range of confidence and competence. Such 
rich tasks promote both fluency and reasoning, and make connections across domains, 
in this case number and algebra (though some would say that they are the same domain 
and that algebra is the structure of arithmetic). More than that (and to go back to the 
film clips), activities such as these, where learners are encouraged to pose their own 
problems, support confidence and creativity. They really are problems where you do 
not know what to do and there is no predetermined route to follow.  
 One way of using rich tasks is to let the learner just play around for a while in the 
environment, to get the feel of it, then offer a closed task which forces him/her to look 
at the structure of the environment—in this case the place value element. Then follow 
up with some multistep opportunities in which the learner has choices to make. 
Ruthven (1989) suggests that this exploration, codification and consolidation route is 
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more profitable and fits better into a constructivist framework that the usual show, tell 
and practice routine that happens so often in many of our classrooms. Of course from a 
teacher’s point of view the codification part, where the teacher makes the learning 
explicit and formalises it, makes great demands on the teacher who has to react to what 
is happening in the classroom rather than deliver a preplanned lesson.  
 Let us have a look at another rich task, one that is aimed at an older audience but 
which I hope you will see has a wide range of appeal. 

Task 2: Odds and evens 
http://nrich.maths.org/4308 
Here is a set of numbered balls. Assume I am playing against you.  

 

I am trying to get an even sum and you are trying to get an odd sum. I go first and I pick 
two at random out of a bag—in this case 3 and 5. The sum is 8, this is even so I win a 
point. I replace the balls in the bag and you have a go. We keep going until we have 
each had, say, six goes. So my question is, is this a fair game and how do you know 
whether it is or it is not?  
 What if we chose a different selection of balls? Assuming we have to play using one 
of these sets, which is the fairest and how do you know?  

 

 I wonder how you worked this out. Perhaps you used a sample space, perhaps a tree 
diagram? Or perhaps you tried it out a few times and recorded your result? One of 
these is the fairest—but it is still not actually a fair game. Is it possible to choose a set of 
balls that would be totally fair? How would you go about it?  
  So here again we see the idea of playing around, being asked to do something 
specific which forces us to look at the structure of the given information, working up to 
a multistep problem. In each case the teacher’s role is to help to formalise the learning 
and discoveries that have been made.  

Rich tasks 
NRICH uses the term ‘rich tasks’ to describe activities such as these. Here are the 
characteristics of rich tasks, although not all tasks will exhibit all characteristics: 
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• combine fluency, problem solving and mathematical reasoning; 
• are accessible, e.g., most students would be able to start ( low threshold); 
• promote success through supporting thinking at different levels of challenge 

(high ceiling); 
• encourage collaboration and discussion (because talking often clarifies 

thoughts, and explaining and justifying are important parts of doing 
mathematics); 

• use intriguing contexts or intriguing mathematics; 
• allow for:  

• learners to pose their own problems, 
• different methods and different responses, 
• identification of elegant or efficient solutions, 
• creativity and imaginative application of knowledge; 

• have the potential for revealing patterns or lead to generalisations or 
unexpected results; 

• have the potential to reveal underlying principles or make connections between 
areas of mathematics. 

 
Here are two other tasks which you may wish to try.  

Task 3: Magic Vs 
http://nrich.maths.org/6274 

 

This problem gives opportunities for children to make conjectures, prove these 
conjectures and make generalisations. They will be practising addition and subtraction, 
and applying their knowledge of odd and even numbers. 
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Task 4: Simultaneous squares 

 

This problem provides an opportunity for students to draw together several different 
mathematical concepts that they have met previously, including the manipulation of 
linear equations, simultaneous equations, properties of straight-line graphs (including 
parallel and perpendicular lines), Pythagoras’ Theorem, and the use of quadratic 
equations to solve geometrical problems. 

Cambridge Maths  
Both NRICH and my new project, 
Cambridge Maths, take all these 
connections very seriously. The 
Simultaneous Squares activity is taken 
from a new post-16 project called 
CMEP. The intention is to redesign the 
post-16 mathematics syllabus through 
making explicit the connections across 
and within mathematics. The big picture 
is based on the London Underground 
map and there are several possible 
routes through. 
 Cambridge Maths, of which CMEP 
will ultimately be a part, is a very 
ambitious project, funded by the 
University of Cambridge. The intention 
is to devise a mapping, or framework, of all the mathematics you might reasonably 
meet between the ages of 5 and 19. The framework will, as you might expect, make the 
most of the connections between the elements of mathematics. As well as the mapping 
there will be summative assessments at the end of various routes through the 
framework, a full set of resources to support those routes, and a comprehensive 
professional development offer to support teachers from novice to expert. The intention 
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is that it would have international acceptance and in the long term would influence 
policy making, and especially in the UK! It is an amazing project to be part of and in the 
first instance I am working on the framework. I’m doing this through a web 
consultation and conversation and it would be great to have some input from 
Australian colleagues. You can follow the progress at www.cambridgemaths.org. 

Task 5: Strike it Out 
A final game. This is my all-time favourite. You need a 0–20 number line and someone 
to play with. Take turns to write an addition or subtraction calculation using three 
numbers from the line. Once you have written the calculation, cross the first two 
numbers off and circle the answer. The other player has to start their calculation with 
the circled number. So a set of responses could look like this: 

       3 + 4 = 7 
       7 – 5 = 2 
       2 + 15 = 17 
       17… 

 The winner is the player who goes last. 
 It is an engaging context for practising addition and subtraction, but it also requires 
some strategic thinking. It is easily adaptable, and can be used co-operatively or 
competitively.  
 Some questions to ask yourself: 

• Is it possible to cross all the numbers off? Could you prove it?  
• Is there a strategy for winning?  
• What is the mathematical knowledge that is needed to play?  
• Who would this game be for? 
• What is the value added of playing the game? 
• Could you adapt it to use it in your classroom? 

In conclusion 
Connectedness, creativity, confidence, fluency, problem solving—all these are possible 
through judicious choice of tasks. John Dewey summed it up beautifully:  
 “Give the pupils something to do, not something to learn; and if the doing is of such 
a nature as to demand thinking; learning naturally results.” 
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LEADING LEARNING: GOING BEYOND THE CONTENT 

VAL WESTWELL 
Department for Education and Child Development, SA 

 
When any new curriculum is introduced it is almost inevitable that initially it will 
be used in a naïve way, with a focus on the content. In South Australia we wanted 
the Australian Curriculum to live up to its potential, as promised by the evidence 
base used to inform its development. We wanted to enable leaders and teachers to 
think about the curriculum in a way that supports students to become successful 
learners as described in the Melbourne Declaration. 
This paper will describe a snapshot of some key elements of the SA Department of 
Education and Child Development (DECD) approach for leading achievable 
changes in teaching and learning. Central to the strategy was the creation of a suite 
of resources, the Leading Learning website. This website supports and challenges 
school leaders and teachers to think about the Australian Curriculum in ways that 
engage all learners to think creatively and critically.  
The tools described in this paper can be found, along with many other resources, at 
http://www.acleadersresource.sa.edu.au.  

Background  
Almost 20 years ago, Seymour Papert (a renowned Mathematics educator) said that, 
‘We need to produce people who know how to act when they’re faced with situations for 
which they were not specifically prepared’. Acknowledgement of this need and the 
implications for education has gathered momentum in systems across the world in 
recent decades. The 2013 OECD skills report cited problem solving and the ability to 
learn as skills needed by workers in the 21st century, ‘to help them weather the 
uncertainties of a rapidly changing labour market’.  
 In South Australia, focus on the need to develop young people who are powerful 
learners led to the establishment of the ‘Learning to Learn’ project. This project 
culminated in the publication of the South Australian Teaching for Effective Learning 
framework (TfEL, 2010). The mandated framework draws together the research 
evidence, the voices of educational experts from around the world, and South 
Australian expertise. 
 The TfEL framework is based on high-challenge, social constructivist pedagogy. It 
recognises that we are all learners and that the conditions needed for students’ learning 
are just as important to adult learners, including the teachers and leaders in our 
schools. The framework reflects two key concepts: 
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• Learning for effective teaching supports leaders and teachers to see themselves 
as learners, reflect on their practice and create opportunities to develop their 
professional expertise. 

• Teaching for effective learning supports teachers to develop their practice in 
three domains: 

– Create safe conditions for rigorous learning 
– Develop expert learners 
– Personalise and connect learning. 

In South Australia, we believe it is essential to bring together the Australian Curriculum 
(what we teach) with the pedagogy articulated in the TfEL Framework (how we teach) 
in order to develop successful, powerful, lifelong learners. 
 In December 2014, AAMT mirrored this position about the need to bring together 
the what and the how, when they stated; “It is more important than ever before for 
teachers to consider how they teach as well as what they teach—what and how cannot 
be separated when developing skills in key areas such as critical thinking, 
communication, and mathematical modelling” (AAMT, 2014). 

Implementing the Australian Curriculum:  
Opportunity and challenge 
With the introduction of the Australian Curriculum, many school leaders in South 
Australia reported their teachers felt overwhelmed by the apparent content 
requirements. Leaders and teachers saw this manifesting itself in an unintentional 
regression to a didactic coverage of curriculum content, rather than the responsive, 
high-challenge pedagogical approach that had begun to develop through their 
implementation of the principles of the TfEL framework.  
 Leaders’ and teachers’ concerns presented us with an opportunity to engage them in 
exploration of how we could work with the Australian Curriculum and the TfEL 
framework and in doing so develop powerful, expert learners. 
 The Australian Curriculum was shaped to reflect 21st century global imperatives and 
Teaching and Learning Services (DECD) responded to the implementation of the 
curriculum to make the strategic intent visible and doable. In the case of mathematics, 
the strategic intent is captured in the Australian Curriculum: Mathematics 
Proficiencies (AC: Proficiencies) and we sought to raise their profile through modelling 
how they can be woven together with the content.  
 The Leading Learning website (DECD, 2013) and associated professional 
development opportunities have been created and continue to evolve to support our 
teachers, leaders and students to become designers of learning, through which the 
strategic intent of the Australian Curriculum and the principles of the Teaching for 
Effective Learning framework are brought together.  

Transforming the way we think about the intended learning 
The Teaching for Effective Learning framework is complemented by a number of 
resources, one of which is a Learning Design framework (Figure 1). This framework has 
been developed to support teachers to be designers of learning in which they bring 
together the ‘what’ (Australian Curriculum) and the ‘how’ (SA TfEL). There are 
considerable similarities between this framework and the ‘Backwards Design’ 
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framework (McTighe & Wiggins, 2006). The notable difference is the way in which 
Learning Design considers what the student brings to the learning. Considering 
students strengths, challenges, dispositions, culture and aspirations are all essential 
aspects of SA Learning Design. 

 

Figure 1. Learning design framework. 

The first box of Learning Design asks teachers to consider, ‘What is the intended 
learning and why is this important?’ Recent South Australian research suggests that 
this question is answered in two fundamentally different ways. One response reflects 
linear, transactional pedagogy that is primarily content driven. The other is a 
responsive, design-oriented pedagogy, which includes a broader range of learning 
intentions. The Leading Learning resource is designed to support a fundamental shift 
from transactional pedagogy to design-oriented, responsive pedagogy. 
 In a transactional model of mathematics pedagogy, the intended learning would 
identify only the content to be addressed with students. For example, the teacher could 
describe the intended learning as: 

What?  
Students learn to: Calculate the area of a parallelogram. 
Why?  
This learning is important because it is in the Year 7 curriculum. 

 With this learning intention, it would perhaps be appropriate to present students 
with information such as this: 
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Figure 2. Traditional textbook introduction 

 Figure 2 is representative of many textbook and worksheet introductions to 
parallelogram area. Notice that the learner is: 

• told which measurements they will need to make  
• told to use the terms base and height 
• told the area formula in words, then in symbols 
• shown one explanation of why the formula works 
• shown how to apply the formula  
• asked to apply the given formula to questions similar to the example shown. 

 For many students, this transactional pedagogy, which provides a ‘learning diet’ of 
told, shown and asked to apply given procedures, has many unintended and quite 
damaging learning outcomes. Inevitably, many students will begin to believe that to 
learn maths they must first be shown what to do. They learn that there is only one way 
to respond to each problem and that successful mathematics learning is about 
remembering and applying processes.  
 In contrast to this transactional pedagogy, in responsive, design-oriented maths 
pedagogy the intended learning would identify a broad range of skills and capabilities. 
For example, the teacher could describe the intended learning as: 

What?  
Students learn to: 

• transfer and build on existing understanding  
• look for, establish and express general rules 
• develop skills in working collaboratively 
• calculate the area of a parallelogram. 

Why?  
This learning is important because: 
it uses the content of the Year 7 curriculum to develop skills in thinking and 
communicating mathematically and working collaboratively. 

 The pedagogy shift that is expressed here centres on using content as a vehicle for 
intentionally developing a broader base of skills and dispositions in students. There is 
no doubt that we want the students to learn the content, but it is insufficient on its own. 
To achieve this learning intention, perhaps we could begin by asking students to make a 
judgment; “For each pair of shapes, which do you think might be bigger: the area of the 
parallelogram or the area of the rectangle?” (Figure 3) 
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Figure 3. Transformed ‘Parallelogram task’. 

 This question requires students to activate their understanding of area, prior to any 
information being provided by the teacher or text. When using this question, the 
teacher does not ask students directly what they understand by the term area, but they 
do gain insight into the students understanding nonetheless. Even if the student has 
only a sense of the term area, rather than an ability to articulate the definition, the 
teacher can observe this ‘sense’ of area. Equally, it does not preclude students from 
articulating the definition.  
 In this pedagogical paradigm, the teacher is responsive to the insight that her 
students bring, therefore it is difficult to identify a precise pattern that her questioning 
would follow. However, it may be broadly similar to that in Figure 3. In this example, 
the learner is challenged to: 

• notice a relationship; 
• convince someone of their current opinion about the relationship; 
• transfer what they already know about area calculation in rectangles to a new 

context; 
• establish a rule for area calculation in parallelograms (perhaps verbally, then 

written words then using symbolic representation). 
 This learning experience consisting of notice, convince, transfer and establish a rule 
has the same outcome as the text book learning experience in relation to ‘content 
learned’. However the additional learning outcomes in this model often include 
students’ learning that: 

• they can create new understanding without it being modelled to them; 
• purposeful dialogue with peers can be mutually beneficial for learning. 

 When we provide students with the opportunity to make connections and construct 
understanding, they are more likely to develop conceptual understanding. Whilst, 
initially, this may appear to be a more time consuming learning process, we should 
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consider that; “Conceptual understanding also supports retention. Because facts and 
methods learned with understanding are connected, they are easier to remember and 
use, and they can be reconstructed when forgotten” (National Science Research 
Council, 2001). 
 Hence developing students’ conceptual understanding through applying pedagogy 
such as this, could result in breaking the cycle of ‘re-teaching’ content year after year. 
We would still need to ensure that students have formal mathematical language and 
conventions, but when we provide this information after they have established 
conceptual understanding, we are adding useful information at the point of need. In 
this model of pedagogy we have instructed only that which we cannot support students 
to reason for themselves. 
 In the latter example, the development of the proficiencies is achieved through day-
to-day learning of content. In the former, there is almost no alternative other than to 
teach the content and somehow bolt on the proficiencies after the fact. 

Supporting South Australian teachers and leaders to transform 
tasks 
Examples such as the parallelogram question, can be useful in communicating the 
nature of the shift in pedagogy that we intend for teachers to enact. However, in the 
same way as we want our students to view mathematics as a coherent whole, in which 
they identify principles behind the specific examples, we also want our teachers and 
leaders to be clear about the pedagogical principles that we are asking them to enact.  
 Providing teachers with individual examples, such as the parallelogram question, 
without challenging and supporting them to identify the principles applied to the 
design of the task, does no more than give them one classroom activity. 
 Many resources and much professional development does exactly this. Even ‘expert’ 
teachers who share their practice can fall in to the trap of sharing their activities and 
telling teachers what they do, without developing an understanding of the deeper 
learning intentions that are implicit for the expert. Whilst ‘smart borrowing’ with 
understanding can be useful in developing teacher practice, the use of activities, 
without understanding the deeper learning intention and the pedagogy required to 
achieve it, can be disempowering and de-professionalising. Leaders empower teachers 
when they support them to build their own bridges from their current to their next 
practice.  
 The ‘Transforming Tasks’ professional learning module in the Leading Learning 
resource (Figure 4) does exactly this. Teachers are asked to suggest possible 
transformations for a task, notice the relationship between the task ‘before’ and ‘after’ 
the transformation, and work with colleagues to establish general principles for 
transforming tasks for greater engagement with intellectual challenge. 
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Figure 4. Leading Learning Resource. Into the classroom:  
Professional-learning module ‘Transforming Tasks. 

‘Transforming Tasks’: Strategies and techniques 
The ‘Transforming Tasks’ module identifies four strategies that, together, articulate the 
nature of the pedagogical shift we aim to achieve.  
These four key strategies are: 

• From closed to open 
• From information to knowledge 
• From tell to ask 
• From procedural to problem based 

 

 

Figure 5. Overview of strategies and techniques from “Transforming Tasks’ 
http://www.acleadersresource.sa.edu.au/index.php?page=into_the_classroom. 

Each of the four transformation strategies could be achieved through applying many 
different techniques. Just four techniques were chosen to exemplify each strategy 
(Figure 5). 
 For each of the 16 techniques, sets of examples demonstrate how they each can be 
used to transform a traditional textbook or worksheet style task into a task that 
develops a broader skill set and provides greater engagement with intellectual 
challenge. These examples show each technique being used in isolation, so they allow 
practice to be changed in manageable steps. Of course, techniques can also be 
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combined. In the parallelograms example (Figure 3) the teacher combined three 
techniques: 

• Compare and contrast – Supporting the shift ‘From information to knowledge’ 
• Explore before explain – Supporting the shift ‘From tell to ask’ 
• Generalise – Supporting the shift ‘From information to knowledge’ 

 It is intended that these strategies and techniques be used alongside the TfEL 
framework to establish a common language for articulating intentional learning design.  
 During the creation of this resource, subject specialists in Mathematics, Science, 
English, History, Geography, the Arts and Technology worked together to establish 
techniques that were deemed appropriate for use in all learning areas. Having one set 
of strategies that can be applied across all learning areas is valuable when considering 
the demands on primary school teachers. Observation of the use of this resource 
suggests that having common strategies could be useful in supporting interdisciplinary 
collaboration in the high school setting. It also allows non-specialist leaders to share a 
common language with teachers. 

Raising the profile of the Australian Curriculum: Mathematics 
Proficiencies: Making them visible and doable 
The verbs used in the Proficiencies describe the actions in which students can engage 
when learning and using mathematics content. To embed the Proficiencies in students 
learning experiences, teachers need to ask questions that activate those actions in their 
students. But what questions would achieve this? The Proficiencies describe the 
actions, but not the questions that can drive those actions.  
 The Bringing it to Life (BitL) tool was developed to bring the proficiencies to life in 
the classroom. The tool models questions that can be used to drive the actions 
described in the Proficiencies. It has three layers, which increase in the level of detail 
provided.  
 Questions have been develop for all four of the AC: Proficiencies, but for the purpose 
of this paper we will look at the AC Proficiency: Understanding. The first layer of the 
tool poses questions that help teachers to enact the emphasis of each Proficiency. 
 The questions, in the first layer of the BitL tool (Figure 7), identified to reflect the 
verbs in the ‘Understanding’ proficiency are: 

• What patterns, connections, and relationships can you see? 
• Can you answer backwards (inverse) questions? 
• Can you represent, calculate or create in different way? 

 

Figure 7. First layer of the mathematics BitL tool – Understanding. 
http://www.acleadersresource.sa.edu.au/index.php?page=bringing_it_to_life 
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 The following description of Conceptual Understanding, from the ‘Adding It Up’ 
report, reflects why, for this proficiency, we identified questions that highlight 
connectivity and flexibility in the use of mathematics: 

Students with conceptual understanding know more than isolated facts and methods… 
They have organized their knowledge into a coherent whole, which enables them to learn 
new ideas by connecting those ideas to what they already know. 
A significant indicator of conceptual understanding is being able to represent 
mathematical situations in different ways… The degree of students’ conceptual 
understanding is related to the richness and extent of the connections they have made. 
(Kilpatrick, Swafford & Findell, 2001) 

 Layer two of the BitL tool contains suggestions about the type of questions that 
teachers can use with students in order to activate each element of the proficiency. For 
example, specific questions under the heading, ‘What patterns, connections and 
relationships can you see?’ include: 

• Which could be the odd one out? 
• What is the connection between…? 
• How are these (values/shapes/angles/questions/graphs, etc.) the same as each 

other? 
• How are these (values/shapes/angles/questions/graphs, etc.) different to each 

other? 
 The questions can be used across all content areas, and in layer three, specific 
examples are provided of how each question could be brought together with a 
particular piece of content.  
 Teachers and leaders have used the BitL tool, both to design learning for their 
students and also to reflect on the nature of the questions in their existing tasks. Often 
teachers have commented how the tool has supported them to realise the extent to 
which they focus on questions reflecting the Fluency proficiency—the ‘recall and 
remember’ element of the mathematics curriculum.  
 Supporting teachers to embed the proficiencies in their learning design is vital. 
Without support from leaders of mathematics curriculum, many teachers can get 
locked into delivering mathematics content and in turn students get locked into being 
passive receivers of information. The BitL tool provides leaders and teachers with a 
resource to make the proficiencies visible and doable in the classroom.  

Supporting effective practice 
The ‘Transforming Tasks’ resources and the BitL tool are just two examples of discrete 
assets within the Leading Learning resource. While the resource allows leaders and 
teachers to dip in and out, an overall developmental narrative exists. This allows 
leaders to determine where their school sits in the developmental story and target tools 
that might be most effective for them. The developmental narrative, from rationale to 
practice, is framed in the navigation menu: 

• Why this approach? 
• What you value 
• Tuning in 
• Bringing it to life 
• Learning Design 
• Into the classroom 
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 Assets within this resource include: videos of national and international educational 
leaders; custom designed animations to assist in describing and communicating the 
shift in pedagogy to stakeholders, including parents and students; tools to assist with 
enacting the pedagogy described in the TfEL framework; and the voices of South 
Australian teachers and leaders, sharing their practice.  
 The Leading Learning resource continues to be developed in response to research 
and feedback from teachers and leaders. Exciting new modules are currently planned 
for ‘Engagement’, ‘Developing executive function through curriculum’ and ‘SOLO’. 

Conclusion 
We know that transactional delivery of mathematical facts has limited sustained impact 
for many students. When we instruct appropriate mathematical processes, rather than 
supporting students to develop conceptual understanding we can leave a trail of 
misconceptions active in our students’ thinking. The instructed information can sit in 
disequilibrium with their intuitive understanding and when they have forgotten the 
instructed information they will return to their intuitive understanding. When students 
learn, with appropriate support, to construct understanding to establish relationships 
for themselves, they are better placed to reconstruct that understanding when the rules 
have been forgotten. When teachers design for learning to occur in this way, they are 
going beyond the delivery of content. They contribute to the development of successful 
lifelong learners. 
 The conditions needed for students’ learning are as important for adult learning. 
Just as with our students, transactional delivery of learning for teachers can have 
limited effect. The Leading Learning resource supports leaders and teachers to work 
together to construct their conceptual understanding, from which their next pedagogy 
can be established. 
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Mathematical formulation has been given prominence in the 2012 PISA 
Mathematics Framework and in the draft 2015 Framework which have identified 
three key mathematical processes: formulating, employing and interpreting 
mathematics. This presentation will look at how a typical Chinese middle school 
teacher structures a lesson on simultaneous equations around the key idea of 
formulation. This emphasis placed by Chinese teachers in choosing problem 
contexts which foster mathematical formulation has lessons for Australian 
teachers. It may also help to explain why Chinese students perform so highly in 
PISA on this measure compared to students in other countries. 

PISA mathematical processes 
The PISA definition of mathematical literacy (Organisation for Economic Cooperation 
and Development (OECD), 2015) refers to an individual’s capacity to formulate, 
employ, and interpret mathematics. These three words, formulate, employ and 
interpret, provide a useful and meaningful structure for organising the mathematical 
processes that describe what individuals do to connect the context of a problem with 
the mathematics and thus solve the problem. Items in the 2012 PISA mathematics 
survey were assigned to one of three mathematical processes, as they will be in 2015:  

• formulating situations mathematically;  
• employing mathematical concepts, facts, procedures, and reasoning; and  
• interpreting, applying and evaluating mathematical outcomes.  

Formulating situations mathematically  
The term formulate in the PISA definition of mathematical literacy refers to:  

individuals being able to recognise and identify opportunities to use mathematics and 
then provide mathematical structure to a problem presented in some contextualised form. 
In the process of formulating situations mathematically, individuals determine where 
they can extract the essential mathematics to analyse, set up, and solve the problem. They 
translate from a real-world setting to the domain of mathematics and provide the real-
world problem with mathematical structure, representations, and specificity. They reason 
about and make sense of constraints and assumptions in the problem. Specifically, this 
process of formulating situations mathematically includes activities such as the following:  
 identifying the mathematical aspects of a problem situated in a real-world context and 

identifying the significant variables;  
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 recognising mathematical structure (including regularities, relationships, and 
patterns) in problems or situations;  
 simplifying a situation or problem in order to make it amenable to mathematical 

analysis;  
 identifying constraints and assumptions behind any mathematical modelling and 

simplifications gleaned from the context;  
 representing a situation mathematically, using appropriate variables, symbols, 

diagrams, and standard models;  
 representing a problem in a different way, including organising it according to 

mathematical concepts and making appropriate assumptions;  
 understanding and explaining the relationships between the context-specific language 

of a problem and the symbolic and formal language needed to represent it 
mathematically;  
 translating a problem into mathematical language or a representation;  
 recognising aspects of a problem that correspond with known problems or 

mathematical concepts, facts, or procedures;  
 using technology (such as a spreadsheet or the list facility on a graphing calculator) to 

portray a mathematical relationship inherent in a contextualised problem (OECD, 
2015, p. 10).  

Australia’s performance in PISA 
In the report PISA 2012: How Australia measures up (Thomson, De Bortoli & Buckley, 
2013), mean scores were presented in students’ performances on the three process 
subscales, by country. In the Formulating process subscale, Australian students’ mean 
score was 498, being 6 points above the OECD average of 492. Among countries whose 
mean scores were significantly higher than Australia were Shanghai-China (624, the 
top performing group for PISA 2012), Singapore (582), Chinese-Taipei (578), Hong 
Kong-China (568), Korea (562) and Japan (554). It is clear that on average Australian 
students do not perform as highly on the mathematical formulation component of PISA 
as we would hope. A similar profile of Australian students’ performance is shown on 
the Employing process subscale. However, it should be noted that on the Interpreting 
process subscale, the mean score (514) of Australian students is significantly above the 
OECD average (497), although still significantly lower than Shanghai-China (579), 
Singapore (555), Hong Kong-China (551), Chinese Taipei (549), Korea (540) and Japan 
(531).  
 Is there something Australian teachers and schools can learn from these high 
performing countries? In the following section we offer a vignette of a “typical” 
mathematics classroom in Shanghai. What is evident from this one classroom is its 
sustained focus on mathematical formulation. While this Chinese classroom may not be 
typical of schools outside Shanghai, we can see how careful choice of mathematical 
problems and sustained attention to developing students’ thinking pays off. What is 
quite clear is the mathematical formulation is demanding and far from mechanical. 

A teaching episode from a Year 6 class in Shanghai 
This lesson takes place in a Shanghai Year 6 class. The school is a local area school. 
However, the mathematical problem that the class is invited to work on may be more 
typical of Year 7 in many other Chinese schools (Ministry of Education, 2011). In this 
lesson, the topic is applications of simultaneous equations to real-world contexts, a 
topic that is typically treated later in Year 9 or 10 in Australia (Australian Curriculum, 
Assessment and Reporting Authority, 2014). The class has already discussed an earlier 
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and simpler application in this lesson. In previous lessons, students have already been 
taught how to simplify and solve algebraic expressions. The focus for this lesson is on 
how to formulate a problem in one or more ways that are amenable to a solution. 
Understanding how to get a particular formulation is critically important, as is the 
capacity to explain what a particular formulation means. This segment of the lesson 
opens with the teacher presenting the main problem for the lesson which is scheduled 
to take 45 minutes. 

T (12:15–12.29): Here we come to the second problem (PPT shows the text): There is a 
boarding school in our city. At the beginning of the new semester, students will be 
arranged into dormitory. If we put 4 students into each room, there would be 5 empty 
rooms. If we put 3 students into a room, 100 students would have no room to live in. The 
question is: How many students live in this school’s dormitory and how many rooms does 
the dormitory have? Please discuss in small groups for 5 mins. This one is a little difficult, 
please consult and discuss, with four people at each table. Let’s see which group will get 
the most solutions. Please look at the problem first. 

Method 1 
After 5 minutes discussion in small groups, the teacher calls on the whole class to listen 
to what has been found. Student S1 is called on first. 

T (17:44–18:03): (The teacher wrote down “Method 1” on the blackboard.) OK, stop, now. 
Please tell the whole class your own ideas. (Many students raised their hands). First, S1, 
please show us your thoughts. 

Student S1 offers a formulation of two simultaneous equations:  

S1 (18:04–19:02): First, assume that the School has a total of x students, and then be able 
to get: 4x 20 = 3x + 100. (The teacher wrote down 4x 20 = 3x + 100 on the blackboard 
and some students began to whisper and query this linear equation) 

 We note that this formulation presents two formulations for x, the total number of 
students. In a typical Australian lesson, it might be more usual to define, at the outset, 
y as the total number of rooms in the dormitory. And so producing two simultaneous 
equations involving x and y; namely y = 4x 20 and y = 3x + 100. In any case, the 
teacher notes that some students are sceptical about S1’s formulation and asks for 
silence. 

T (19:03–19:16): Please don't discuss, let's listen to her interpretation first, and we could 
help her find out if there something is wrong, what is the 4x? 

Student S1 ponders and does not respond 

S1 (19:16 – 19:24): (Silent, no answer) 

 This is now a critical point for the lesson. The formulation presented by S1 is 
obviously wrong. The teacher could have dismissed it as incorrect and moved to ask 
another student, but chooses to use this response to go over the key relationships. 

T (19:24–19:47): What is the 4’s unit? The 4’s unit is persons per room, rather than 
persons, right? (Teacher wrote down “4 persons/room” on the blackboard) What is the x 
unit? The x unit is the total number of persons, right? Because this is what she assumed. 
(Teacher wrote down x persons on the blackboard) So, what I want to ask is, does it make 
sense to multiply these two (the 4 and the x)? 

Students generally respond agreeing that the original formulation does not make sense. 

S (19:47–19:50): No, it doesn’t make sense. 
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 What is notable about this segment is that the teacher tries to ensure that students 
think about whether the particular terms of S1’s formulation are logical. All students 
are required to make their own evaluation before the class moves on. 

T (19:50–20:19): It doesn’t make sense, right? So I think this place (4x) is wrong. 
(Teacher draws a circle round the 4x with chalk on the blackboard.) In the same way, this 
place (3x) is also wrong. (Teacher draws a circle round the 3x with chalk on the 
blackboard.) So this formula is not correct, right? OK? S1, what was your original answer? 
This formulation is wrong, but it doesn't matter (The teacher pointed to 4x  20 = 3x + 
100 on the blackboard). We asked her tell us her original answer, try again. 

 It appears that the teacher knew that student S1 had another formulation, which the 
student gives as follows: 

S1 (20:19–20:41): (Teacher writes the following formulation on the blackboard) 

  

x − 4× 5
4

= x +100
3

 

 The teacher’s response to this second formulation by student S1 is quite different to 
the first. While this second formulation is not entirely correct, the teacher wants the 
whole class need to think carefully about how it can be made right.  

T (20:41–22:34): Have your seat, let’s have a check together. This formula looks a little 
like correct, right? What is this (x)? It’s the total number of persons. 4 is the number of 
persons per room. What is the 5? 5 is the number of empty rooms. So x 4 × 5 is persons 
living in the dormitory, right? (Some students indicate agreement briefly.) And then 
divided by 4. What does 4 mean? Persons/room. What could we get after dividing by 4? It 
is the total number of the rooms, right? (Some students indicate agreement briefly.) What 
about the other side? This side also means the number of the rooms, so it is the same, 
right? Let's check this formula and find out if there something is wrong? Look: the left 
side. What is the meaning of x 20? What is the meaning of the 20? (Teacher pointed at 
4×5 on the blackboard.) … How about these 20 persons? There are 5 rooms nobody lives 
in, right? (Some students indicate agreement briefly. Teacher writes down 5 rooms 
nobody lives on the blackboard.) So the 20 is the number of persons who could live in the 
5 rooms, right? (Some students indicate agreement briefly.) Then what is the meaning of 

20? The total numbers of students minus the number of students who do not live in the 
dormitory. Do you think that makes any sense? Do you think there is something wrong? 
There is this number of occupied dormitory rooms which we don’t know, plus 5 
unoccupied rooms. Right? (The teacher draws a diagram with chalk on the blackboard, 
like this: □□□□□□… ) Originally, all the students could live in these rooms, 
(teacher points at the □s). The rooms on this side (teacher points at the s) are where 
nobody lives. If you subtract the number of students who don’t live in the 5 rooms on this 
side (teacher points at these s), and then divide by 4, does the result make sense? It is 
not correct, is it? Then you tell us how to do it? How could you do some modification 
based on her work? S2? (Student S2 is invited to state her formulation and gives it.) 

 In this extended exposition, the teacher goes over the problem herself, pausing only 
to ask if the students are following her line of thinking. She pauses several times to ask 
“Right?”, almost rhetorically. Unlike the way in which she responded to an obviously 
incorrect first formulation, her treatment here is much more careful. “Let’s have a 
check together” is used as a cue for the teacher to model for the students the kind of 
mathematical thinking that they need to analyse the nearly correct response given by 
S1. The teacher treats this second formulation as a serious attempt and possibly one 
that is representative of other students in the class. A key idea is to remind students 
that after dividing by 4, they can obtain an expression for the total number of the 
rooms. Again, students are invited to think about the meaning of each term. The 
teacher also introduces a simple diagrammatic representation of the room in the 
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dormitory showing those rooms which are occupied and those which are empty. This 
diagram will be featured in subsequent stages of the lesson.  
 

S2 (22:34–22:50): 

  

x
4
+ 5 = x − 100

3
  

 Student S2 presents a correct formulation for the number of rooms, using the two 
conditions. But the teacher wishes now to make sure that S2 and the class are able to 
explain these relationships in context-specific language. 

T (22:50–22:58): Please give us an interpretation about your linear equation. She (S2) 
has done some adjustment on it, right? Give an interpretation. (S2 refers to the first 
term.) 

  

x
4

  

S2 (22:58–23:05) This is on behalf of the total number of people that are 
(accommodated) in rooms (a little slow and vague). 

Student S2 needs some prompting: 

T (23:05–23:32): What can we get from it? (The teacher points to x/4) This is the number 
of rooms, isn’t it, that these people live in. (The teacher points at the □s), then divided by 
4, then it is the number of rooms in these (□s), OK. Why do you add 5? 

Student S2 responds correctly: 

S2 (23:32–23:35): Because there are five empty rooms. 

The teacher now asks S2 to explain the right side in context-specific language. 

T (23:42–23:49 referring to the right side of the equation): What about the right side? 

Student S2 correctly uses context-specific language to explain the right hand side. 

S2 (23:49–23:55): x  100 is all the people who live in the dormitory, then divided by 3 is 
the number of rooms. 

 Some teachers might simply commend the student before moving on to the next 
task. But mathematical formulation is more than being able to give the correct 
mathematical terms. All students need to be aware that any formulation needs to make 
sense in terms of the specific features of the context being considered. This teacher is 
clear about this.  

Method 2 
T (25:30–25:53 (The teacher writes “Method 2. Let the dormitory have y rooms” on the 
blackboard) Let me ask, Can anyone make a formulation different from the first 
formulation? 

  

x
4
+ 5 = x − 100

3
  

 Student S3 gives a second formulation using y as the total number of rooms to 
obtain an expression for the total number of students. Again two simultaneous 
equations are presented involving y only, leaving implicit that x = 4(y 5), x = 3y + 
100. 

S3 (25:53–26:10): 4(y 5) = 3y + 100 (Teacher writes down 4(y 5) = 3y + 100 on the 
blackboard simultaneously) 
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Once again, the teacher asks this student to give a context-specific explanation: 

T (26:10–26:12 to S3): Would you please explain it? 

Student S3 explains the meaning of y  5: 

S3 (26:12–26:26): y  5 is the number of rooms which have students living in them. 

 Before the teacher returns the class of the diagrammatic representation, it is 
important to make sure that students explain the meaning of y  5 in terms of the context 
and are able to relate this term to the diagram that has been presented.  

T (26:26–26:39): That is to say, looking at the total number of occupied dormitory rooms, 
(Teacher points at the □□□□□□ ) right? Get rid of the 5 rooms…….And there 
are 4 people in each room, right? And then? 

Student S3 then explains why it is necessary to multiply (y 5) by 4. 
S3 (26:43–26:48): This gives the total number of students who live in the dormitory. 

The teacher sees no need to comment on this formulation and so asks S3 to comment 
on the right hand side. 

T (26:43–26:48): Oh, then multiply by 4, which is the total number of students who live 
in the dormitory, isn’t it? OK, (Teacher draws a tick under the 4(y  5), and what about 
the other side? 

Student S3 now explains the meaning of 3y: 

S3 (26:48–26:53): 3y is the total number of students who could live in the dormitory.  

Student S3 does need to be reminded about the need to add 100, but the teacher is 
concerned to have the class attend to this feature of the formulation. 

T (26:53–27:01): Oh, does each room have a person living in it? Is every room full of 
students? How many people live in each room?  

This question is addressed to the whole class. Students respond together: 

Ss (27:01:27:02) 3 persons. (Teacher says 3 persons simultaneously with students). 

The teacher then reiterates: 

T (27:02:27:11): But, this (pointing to 3y) is not the total number of students, is it? What 
do we need to add? The number of students who could not live in the dormitory, right? 
OK. (Teacher draws a line under 3y+100) 

 At this point, the teacher is concerned to have students understand clearly that the 
term 3y+100 expresses the number of students that are accommodated using a three-
person per room rule and the 100 students who are left over. Students also need to 
understand that there are now two different formulations of the total number of 
students depending on whether each room accommodates 4 people or 3 people.  

T (27:11:27:45): What’s this? (the teacher points to 4(y 5)) This is the total number of 
students who live in the dormitory of the school. This (the teacher points to 3y + 100) is 
also the total number of students who lived in the dormitory of the school. We now get a 
formula according to this proper relationship, right? OK, please have your seat. 

At the same time, the teacher returns to the equation resulting from Method 1: 

  

x
4
+ 5 = x −100

3
  

The teacher points to the formulation on the left side and says: This is the total number 
of the dormitory rooms of school, right? The other (the right) side is also the total 
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number of the dormitory rooms of school, isn’t it? Does any student have an idea that is 
different? (27:45–28:22). The teacher asks various students if they are happy with the 
formulation. No disagreement is indicated. However, the teacher recognised that some 
students may not have written the left-hand side as 4(y 5). So to clarify:  

T (28:22–29:06): Some of your classmates may have said: “This place can be changed.” 
(Teacher points at the 4(y  5), and asks “How could it be changed? There is a bracket 
here, right? Based on this, I could change it into 4y 4×5 = 3y+100, is this one right? 

Students agree with the possibility of expanding the left-side bracket: 

Ss (29:06–29:07): Students in unison say: Right. 

The teacher then wishes to check that students understand what 4y 4×5 means. 

T (29:07–29:19): We can see they are the same from the perspective of the formulation, 
right? How could we understand it from the perspective of the context? (Students hands 
go up) S5?. 

Student S5 offers an explanation: 

S5 (29:19–29:30): 4y is the number of students there would be if every room contained 4 
people. Then, 4×5 is the number of students that the vacant dormitory rooms would 
accommodate. 

 The teacher returns to the diagram showing the total number of rooms  
(□□□□□□… ). The teacher makes a special point of reminding students that 

4y cannot logically be the total number of students. If every room had 4 students living 
in it, there would be too many students. The actual number of students is less than 4y. 
How many less is what the teacher wants students to think about.  

T (29:30–29:59): 4y is the number of students there would be if every room had 4 people 
living in it, right? And then subtract here (the teacher points to the empty rooms 
indicated by ) the number of students that 5 empty rooms can accommodate, 
that is the actual number of students, isn’t it? (Students are silent.) 

The teacher then refers to the diagram showing all the rooms, □□□□□□ and 

revisits the reasoning behind the formulation based on having 4 students in each room. 
Then the teacher considers the situation where 3 students live in each room. 

T (29:59–32:01): How many people live in each room? 3 persons (Teacher draws 3 
crosses into every □ and into every of the second one). What’s the result? How many 
people are there outside? 100 persons. What do you think about it? Are there any new 
ideas? The teacher then asks students to consider the difference between the two 
representations. 

Now that the teacher is confident that the students understand that there are two 
expressions for the total number of students, she wants them to look carefully at the 
two expressions. For this purpose, having the left side in expanded form is likely to be 
easier for students to think about than having 4(y 5). Students need to develop a 
capacity to evaluate which form of a given formulation is more suitable for finding a 

value for one of the unknowns. Student S6 offers an explanation: 

S6 (32:01–32:10): The difference of them two should be y 5. Oh, no, y + 5, y + 5 
persons. 

Some confusion between the number of rooms and number of persons is evident. 

T (32:10–32:11): What is y? (The teacher asks Student S6.)  

S6 (32:11:32–16): This side has y rooms, and every room is full. 
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 The teacher now wants students to consider the difference between the two sides 
of the simultaneous equation in its expanded form: 4y 20 = 3y + 100. This is an 
interesting move that could enable some students to solve the equation visually. 

T (32:16:32:42): (The teacher pointed at the in the upper) If these are all full 
of students, right? How many people if every room is full? (Teacher wrote 4y on the 
blackboard.) That’s 4y persons, (Teacher pointed at the in the down) and this 
is so such numbers rooms, right? Every room has 3 persons and all are full, right? That is 
3y. (The teacher wrote 3y on the blackboard). What is the difference of the two numbers? 
How much? y persons? Can you work out y persons? Take a seat and think about it. 

 The teacher has referred to “y persons” based on the expressions involving y which 
are the formulations for the total number of students. And some students after looking 
at the equations above conclude that they are finding the number of people:  

Ss (32:42–32:46): There is a total difference of 120 people. 

The teacher senses that students are locked into thinking about the number of people 
which is the topic of this formulation. But are they thinking of what y represents? 

T (32:46–32:51): Oh, there is a difference of 120 people, why? (Teacher wrote 4y –3y = 
120 on the blackboard) what is the 120? 
 
Ss (32:51–33:01): Ur, Ur, 5 rooms. 

 This seems to be a point of difficulty for the class. Some students appeared to think 
that since the two expressions, namely 4y – 20 and 3y +100 involving y concern the 
total number of students, the value for y obtained by solving these two simultaneous 
equations, 4y  3y = 120, represents the number of students. This confusion has lost 
sight of the original formulation where y designates the number of rooms. There was 
no evaluation of this result. If this had been done, then students could have seen that 
with 120 rooms, the total number of students would be 4  120 less 20 (i.e. 460 
students); and using the other arrangement of having 3 students per room, the total 
number of students would be 3  120 plus 100, also giving 460 students.  
 In the next few minutes, the teacher asked students to consider which of the two 
formulations was easier to solve. Teacher and students agreed that the simultaneous 
equations involving y are easier to solve than the fractional formulations involving x. 
Students then looked at another problem for the remainder of the lesson. 
 What is clear and important about this segment of the lesson is how at various 
stages the teacher and students are able to focus in a prolonged way on alternative 
mathematical formulations of the problem. The actual employment of mathematics to 
solve the problem is assumed. Students are invited to consider whether Method 1 or 
Method 2 offers an easier path to the solution. It would have been interesting to see 
how well students were able to solve for x using the two formulations derived in 
Method 1. There was a need to involve students more in interpreting the result obtained 
in Method 2, and to evaluate this result. That appears to be a weak point. However, in 
terms of its consistent focus on mathematical formulation this lesson shows clearly the 
importance placed by this Chinese teacher on elements of mathematical formulation 
that are strongly emphasised by the PISA Framework (OECD, 2015).  
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Lessons for Australian teachers 
From an Australian perspective, this lesson, while not without some features that we 
may question, provides a different perspective to mathematical formulation that may 
be presented in a typical multi-step approach to solving simultaneous equations. A 
multi-step approach to solving simultaneous equations from worded problems is 
succinctly presented by Vincent, Price, Caruso, Romeril and Tynan (2012) in their 
MathsWorld10 (Australian Curriculum edition) textbook as: Step 1: define the two 
variables; Step 2: Construct two different linear equations using the two variables; Step 
3: Solve the equations simultaneously; and Step 4: Interpret the solution within the 
context of the problem (p. 215). This Chinese lesson is almost entirely focussed on the 
two opening steps, with Step 2 having the greatest potential to help students to think 
mathematically. For that to be achieved, one needs a carefully chosen and well-tried 
problem. The process of mathematical formulation, whether at Year 10 in this 
Australian textbook or earlier in the Chinese example, is not mechanical. It requires an 
approach to teaching which recognises the importance of: 

• assisting students to think about the mathematical aspects of a problem situated 
in a real-world context and to identify variables for the total number of rooms 
and the total number of students;  

• having students understand and explain the relationships between the context-
specific language of a problem and the symbolic and formal language needed to 
represent it mathematically;  

• representing a situation mathematically, using appropriate variables, symbols, 
and diagrams, and connecting the different symbolic expressions to a well-chosen 
diagram;  

• ensuring that students understand and can explain the relationships between the 
context-specific language of a problem and the symbolic language needed to 
represent it mathematically; and 

• modelling through demonstration and questioning how to translate a problem 
into mathematical language. 

 These features, clearly present in the Chinese lesson discussed here, need to inform 
any multi-step approach to ensure that mathematical formulation is treated seriously. 
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By identifying the learning experiences that need to be developed in the primary 
school, and how secondary teachers can build on these experiences, ensures solid 
algebraic understanding and a smooth transition between primary and secondary 
mathematics. Using concrete materials, within a concrete–representational–
abstract pedagogical approach, may be seen as one among many methods that 
contribute to the overall process of developing algebraic skills. Linking an area-
based model to previous understandings involving numbers should assist the 
conceptual understanding of algebraic expansion and factorisation to ensure that 
students are not just fluent in algebraic manipulation but also understand how the 
processes work.  

Introduction 
As a secondary trained teacher who now finds herself predominantly teaching primary 
pre-service teachers, an interest in the important transition between primary and 
secondary mathematics teaching has been developed. By looking at the big picture, it is 
possible to identify the learning experiences that need to be developed in the primary 
years and how secondary teachers can build on these experiences to ensure a smooth 
transition and solid mathematical outcomes.  
 One of the big ideas to set children up for algebra in secondary schools is developing 
multiplicative thinking, and an important part of developing multiplicative thinking is 
developing an understanding of the importance of arrays as multiplicative models. As 
early as Year 2 the Australian Curriculum: Mathematics states that students should 
“recognise and represent multiplication as repeated addition, groups and arrays” 
(ACARA, 2014). In particular, arrays and regions assist in supporting the shift from 
additive thinking (‘groups of’ model) to multiplicative thinking (‘factor-factor-product’ 
model; Siemon, 2013), and eventually to proportional and algebraic thinking. 
 By laying appropriate groundwork, primary teachers can set children up for not only 
a deeper and more robust understanding of multiplication and division, but also 
mathematical success in the secondary years. 
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A developmental approach 
When students are asked to use blocks, tiles or counters to make four groups of three 
they will often make a model that resembles Figure 1. This representation is correct, but 
if the aim is to move students from additive to multiplicative thinking, may not be the 
most efficacious. The model used in Figure 1 can encourage students to think about 
multiplication only as repeated addition, whereas an array or region model (Figure 2) 
not only demonstrates the strategy of repeated addition it also encourages other 
understandings such as the relationship between factors and multiples and the link of 
multiplication with area. 

  

Figure 1. Four groups of three.      Figure 2. Array: four groups of three. 

 Array models can be extended into other multiplication situations. Representing a 
one-digit by two-digit multiplication as an array provides a visualisation of both the 
magnitude of a number and how it can be partitioned to promote understanding. It also 
demonstrates the link between multiplication, the distributive property and area (see 
Figure 3).  

  
3 × 14 = 3 × 10 + 3 × 4 = 30 + 12 = 42 

Figure 3. Array representations of 3 × 14. 

 This idea can then be extended to two-digit by two-digit multiplication, or any-digit-
by-any-digit multiplication. Students who do not use an array or region method to 
visualise multiplication and who have a limited understanding of the distributive 
property often think that 13 × 12 can be calculated by 10 × 10 + 3 × 2, which is incorrect. 
Using the array model and identifying the area of the associated regions allows students 
to identify why this is not the case (see Figure 4). 
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13 × 12 = 10 × 10 + 3 × 10 + 10 × 2 + 3 × 2 
 = 100 + 30 + 20 + 6  
 = 156 

 

13 × 12 = 8 × 8 + 5 × 8 + 8 × 4 + 5 × 4 
 = 64 + 40 + 32 + 20 
 = 156 

Figure 4. Array representations of 13 × 12. 

 Building on previous understandings is important. When students are able to build 
on prior knowledge by making connections to previous understandings, their learning 
will be more meaningful. For example, just as students should see that the process of 
multiplying by an any-digit number is just an extension of the process for multiplying 
by a one-digit number, they should understand that the process is the same no matter 
what the multiplier (Reys et al., 2012). This, in turn, leads to the process of generalising 
and allows students to apply this prior knowledge to algebraic representations, forging 
the links of factors and the distributive property from number and applying them to 
algebra.  
 This development of the understanding then continues into the secondary 
classroom. The use of a concrete, visual, area-based model, such as algebra tiles allows 
this seamless transition. Algebra tiles are a model that can facilitate this. Although 
algebra tiles are versatile, they are not intended alone to constitute an entire course in 
algebraic manipulation but instead are anticipated to be one of several ways in which 
conceptual understanding can be developed. To use algebra tiles, students need only to 
understand the properties of the additive identity (a + 0 = a) and the additive inverse 
(a + (–a) = 0). 
 Building on the array model for multiplication of any-digit numbers, linear and 
quadratic expansions and factorisation may be modelled with algebra tiles. They are 
also useful for investigating integer arithmetic, but that is beyond the scope of this 
paper.  
 By looking at 2(x – 3) as two lots of (x – 3) a model can be constructed using algebra 
tiles (see Figure 5). The use of the terms ‘factors’ and ‘multiple’ which were introduced 
when students were looking at arrays in the Number strand in the primary years are 
illustrated in a meaningful way. 
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Figure 5. Expanding 2(x – 3). 

 
In the same way, multiplying by a negative number may also be modelled (see Figure 
6). 

 

Figure 6. Expanding –3(2x + 1). 

 
 Linear factorisation builds on previous understandings of the array models of prime 
and composite numbers that have been developed in the primary years. Students can 
use algebra tiles to consolidate that prime numbers (and the number 1) can only be 
represented by one array, whereas composite numbers may be represented by at least 
two different arrays (See Figures 7 and 8). 
 

 

Figure 7. Seven is prime. 
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Figure 8. Six is composite. 

 
 In the same manner, 2x + 5 can only be represented by one array, so it has no 
integral factors whereas 2x + 6 may be represented by more than one array which 
means it has integral factors (see Figure 9). Naturally, if there is a positive integral 
factor, then there is also a negative integral factor. 

 

Figure 9. 2x + 6 may be represented by two arrays, so has an integral factor. 

 
 Quadratic expansions may also be easily represented using algebra tiles. The area 
representation parallels the formal expansion method for number using the distributive 
property. The multipliers (factors) may be set up on the frame (see Figure 10);  
(x + 2)(x – 3) means all of (x + 2) is to be multiplied by all of (x – 3). 

2x + 6 = 2(x + 3) 
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Figure 10. Expanding (x + 2)(x – 3). 

 Each line of formal mathematical notation is accompanied by a concrete 
representation, which allows students to ‘see’ the meaning of each line. Other 
investigations of perfect squares, difference of perfect squares and examples of other 
coefficients of x2 can also be explored. For a detailed description of how to factorise 
quadratics using algebra tiles see Day (2014). 
 The solution of linear equations may also be modelled using algebra tiles (See Figure 
11), especially if students in their primary school years have had a good grounding in 
the equals sign representing balance. Once again, formal notation can be developed 
alongside the concrete model. 

 

Figure 11. Solution of linear equation 2x – 6 = 3x + 1. 
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 There are some limitations of the algebra tiles model. To represent a variable with 
concrete materials is one such obvious limitation. To endeavour to overcome this, it is 
important that the length attributed to the variable is not a multiple of the length 
attributed to a unit piece. In this way students are less likely to form a visual 
impression of a numerical value for the variable. Although there are some limitations of 
the model, the advantages of having a concrete, visual, area-based model far outweigh 
the limitations (Lovitt, personal communication, June 26, 2013). 

The Australian Curriculum: Mathematics 
The following are content descriptors from the Australian Curriculum: Mathematics 
(ACARA, 2013) that can be directly addressed by the use of algebra tiles. 

• Introduce the concept of variables as a way of representing numbers using letters 
(ACMNA175)  

• Create algebraic expressions and evaluate them by substituting a given value for 
each variable (ACMNA176)  

• Extend and apply the laws and properties of arithmetic to algebraic terms and 
expressions (ACMNA177)  

• Solve simple linear equations (ACMNA179)  
• Extend and apply the distributive law to the expansion of algebraic expressions 

(ACMNA190)  
• Factorise algebraic expressions by identifying numerical factors (ACMNA191)  
• Solve linear equations using algebraic and graphical techniques. Verify solutions 

by substitution (ACMNA194)  
• Apply the distributive law to the expansion of algebraic expressions, including 

binomials, and collect like terms where appropriate (ACMNA213)  
• Factorise algebraic expressions by taking out a common algebraic factor 

(ACMNA230) 
• Expand binomial products and factorise monic quadratic expressions using a 

variety of strategies (ACMNA233) 
• Solve problems involving linear equations, including those derived from formulas 

(ACMNA235) 
 With the Proficiency Strands of Understanding, Fluency, Reasoning and Problem 
Solving as the power driving the content of the Australian Curriculum: Mathematics, 
there is increased motivation for teachers to ensure that students are not just 
procedurally fluent in algebraic manipulation but also understand how the processes 
work and how to reason mathematically. By linking the area-based model to previous 
understandings involving number, secondary teachers can build on the work done in 
primary schools and assist students to gain an understanding of the concepts 
underpinning algebraic manipulation. Having students work with concrete materials 
provides an ideal forum for mathematical conversations which assist students to clarify 
their own ideas and share ideas with others. This leads to explanation, justification and 
communication, all of which contribute to mathematical reasoning. 
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Given the right learning environments primary aged children can and do develop 
the capacity to think multiplicatively. Through vignettes taken from interviews with 
a Year 5 class during a research project, the optimal conditions for the conceptual 
development underpinning multiplicative thinking is examined.  
 

There is a nation-wide concern that we are not producing enough students with a 
mathematics background. Over the last few years there has been a continuing trend of 
students electing not to choose higher or even intermediate mathematics as a subject of 
study (Kennedy, Lyons & Quinn, 2014). There are many possible reasons for this. One 
of them is that many students choose not to be involved in higher mathematics due to a 
lack of success during primary and lower secondary years. The reasons behind this lack 
of success are many and varied, but certainly a major contributor would be an inability 
to cope with the content of the mathematical curriculum. One area of the mathematical 
curriculum that causes concern and is really a ‘gate keeper’ to higher mathematics is 
the capacity to think multiplicatively. 

Multiplicative thinking is not just about multiplication facts 
Most teachers would agree that basic multiplication facts are essential for further 
success in mathematics. They sit at the root of learning multi-digit multiplication, 
fractions, ratios, division, and decimals (Elkins, 2002; Kilpatrick, Swafford & Findell, 
2001). Fluency with multiplication facts allows students to focus on more sophisticated 
tasks such as problem solving (Westwood, 2003). The authors of this paper whole-
heartedly endorse the learning of multiplication facts, but students can be fluent with 
multiplication facts yet still be additive, rather than multiplicative thinkers. What is 
required is the development of the ability to apply these facts to the variety of situations 
that are founded on multiplication. 

What is multiplicative thinking? 
According to Siemon et al. (2006a, p. 28), multiplicative thinking is: 

• a capacity to work flexibly and efficiently with an extended range of numbers 
(and the relationships between them); 
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• an ability to recognise and solve a range of problems involving multiplication 
and/or division including direct and indirect proportion; and 

• the means to communicate this effectively in a variety of ways (e.g., words, 
diagrams, symbolic expressions, and written algorithms).  

 Whilst most teachers would recognise and acknowledge the first two dot points they 
may be a little more unfamiliar with the notion of communicating these ideas. However 
if one takes into consideration the Proficiency Strand requirements from the 
Australian Curriculum: Mathematics (ACARA, 2015) it should be noted that 
communication is an integral element of the Reasoning Proficiency and therefore 
fundamental to mathematics learning. It is these same communication skills that allow 
students to explain their understandings so that teachers can make judgments about 
their students’ depth of knowledge for the purposes of assessment. 

Why is multiplicative thinking important? 
Multiplicative thinking is critical to mathematical success as it underpins the majority 
of work pursued in the area of Number and Algebra through the upper primary and 
lower secondary years of schooling. It is fundamental to the development of concepts 
and understandings such as algebraic reasoning (Brown & Quinn, 2006), place value, 
proportional reasoning, rates and ratios, measurement, and statistical sampling 
(Mulligan & Watson, 1998; Siemon, Izard, Breed & Virgona, 2006b).  

Multiplicative thinking and primary school students 
The development of multiplicative thinking is obviously important and this raises the 
question of whether it is being appropriately developed in primary schools. The 
research of Clark and Kamii (1996) revealed that 52% of Year 5 students were not 
sound multiplicative thinkers. This was supported through research conducted by 
Siemon, et al. (2006a) who found that up to 40% of Years 7 and 8 students performed 
below curriculum expectations in multiplicative thinking and at least 25% were well 
below expected level.  
 It is important to note the areas where students might find difficulties in developing 
multiplicative thinking. The following list is quite long, but what should be highlighted 
is that there are ways and means to remediate these difficulties that are 
developmentally suitable for primary school students and develop a conceptual rather 
than procedural understanding. 
 Some of the difficulties that students encounter are: 

• seeing the relevance of the many-to-one count (Jacob & Willis, 2003); 
• employing a row by column structure (an array) to work out a number of squares, 

and resorting to additive strategies (Batista, 1999); 
• recognising the multiplicative situation to employ multiplicative thinking (Van 

Dooren, De Bock & Verschaffel, 2010); 
• reconceptualising their early counting and additive understanding about number 

to understand multiplicative relationships (Sophian & Madrid, 2003; Wright, 
2011); 

• recognising that multiplicative thinking is distinctly different from additive 
thinking even though it is constructed by children from their additive thinking 
processes (Clark & Kamii, 1996); 
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• understanding the relationship between multiplication and division and being 
able to consistently employ the inverse relationship between the two operations 
(Jacob & Willis, 2003); 

• understanding and employing the commutative property of multiplication; 
• transitioning from using manipulative materials when the need to describe when 

the operations of multiplication and division became objects of thought rather 
than actions (Sophian & Madrid, 2003; Wright, 2011).  

 The remainder of this article will focus on students from a Year Five classroom and 
the conceptual understandings that were displayed when students responded to a 
written quiz and a one-to-one interview regarding multiplicative thinking. 

One-to-one interviews 
A series of one-on-one interviews were undertaken across several schools. Although 
acknowledging that one-to-one interviews are time consuming, this form of data 
collection was chosen as a way in which to: 

• uncover children’s thinking and help to understand why some students learn and 
others fail to learn (Heng & Sudarshan, 2013); 

• enhance the knowledge and skills of teachers by developing a deeper 
understanding and awareness of the way that children construct their 
mathematical understandings (Heng & Sudarshan, 2013); 

• illuminate student misconceptions (Heng & Sudarshan, 2013) and reveal 
conceptual understanding of a topic which may not necessarily be obvious 
through a written assessment task (Clements & Ellerton, 1995); and 

• allow teachers to develop more realistic expectations of what the student can and 
cannot achieve (Clarke, Roche & Mitchell, 2011) 

 We would like to explore a selection of the comments made by some of the students 
during the interview, discuss how these comments have the potential to give an insight 
into the capacity to think multiplicatively, and highlight some of the teaching practices 
that may be helpful in assisting the students to develop this thinking. For the purposes 
of this article we will look in some depth at one of the interviews, with supplementary 
comments taken from observations from other interviews.  

James (a pseudonym) approximately 11 years of age 
When James answered the questions posed to him in the interview he was not the 
student who was the quickest to respond. In answering the question of 7 × 6, he took a 
considered moment and then answered the question correctly. Later on, when 
explaining a mental computation strategy, he made a multiplication fact error of  
3 × 8 = 16, so his recall was not infallible. However, what he was able to do was to 
analyse his solution and determine that 16 could not have possibly been a correct 
answer. James may have made a multiplication recall error but his understanding of 
numbers allowed him to appreciate there was an error, locate that error and then fix it.  
 James was asked to use mental computation to work out the answer to 6 × 17 and to 
articulate how he would solve the problem. He reasoned as follows: “Six times seven is 
42, so, then I think what’s six times one? And I think six, and add it to 60, so 42 plus 60 
is 102. The 60 came from six times one but it’s actually a ten.” James’s explanation 
allowed us to see a number of important mathematical ideas and understandings in 



HURRELL & DAY 

67 

action. In order to achieve this computation mentally, he applied some basic facts (6 × 1 
and 6 × 7), partitioning (seeing seventeen along place value partitioning lines as 10 and 
7) and place value (the one is seen as a ten). When James was asked to illustrate his 
thinking using manipulative materials he was able to do so. Selecting from a range of 
materials James chose the Multibase Attribute Blocks (MAB) and modelled his 
understanding by creating six lots of seventeen, each made up of a long (ten) and seven 
ones. It should be noted that he actually talked about needing six tens and then about 
the required ones, not one ten and seven ones and another one ten and seven ones, and 
another…etc. His thinking suggested he was seeing the objects multiplicatively rather 
than additively.  
 James was then asked if, by knowing 6 × 17, did he know what 17 × 6 was? His 
answer to this was a very firm “Yes”. When asked to explain how he knew, James 
expressed his understanding by saying it was “the same thing backwards”, and then 
proceeded to explain how he was still multiplying 6 by 10 and 6 by 7, hinting at an 
understanding of the commutative property of multiplication. He then went on to use 
smaller numbers to illustrate his understanding. He selected counters to illustrate five 
multiplied by three and constructed a multiplicative array. That is he arranged the 
counters as three rows of five counters in a rectangle (Figure 1). 
 

 

 

Figure 1. A three by five array. 

He then said “You can also look at it as three columns and five rows” and turned the 
rectangle to illustrate a five by three array (Figure 2). 

 

Figure 2. A five by three array. 

 Again, this level of understanding strongly indicated multiplicative thinking. Other 
students when faced with constructing a model to illustrate three by five created three 
sets of five (Figure 3) and when asked if there was another way of showing this did not 
employ the array, perhaps indicating that additive thinking was dominant. 

 

 

Figure 3. Three sets of five. 
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 When asked if multiplying 89 by three gave the same answer as 80 by three and nine 
by three James was unequivocal in answering in the affirmative. He stated that splitting 
it up to “three times 80 and three times nine” was easier than trying to work out 89 
times three or 89 and 89 and 89 (James indicated a developing understanding of the 
limitations of repeated addition/additive thinking). Although he did not name it, nor 
was he required to, James showed himself to be completely comfortable in partitioning 
a number and employing the distributive property of multiplication over addition. 
Likewise when James was asked to explain the inverse relationship between 
multiplication and division he did so without hesitation. 
 James was asked the question: “My friend Paul says that if you know that 6 × 17 is 
102, you can work out the answer to 102 ÷ 6. Is he correct?” His reply was “that 
(pointing to 102) is a multiple of six and 17... I know a multiple divided by a factor is 
another factor.” Not only had James displayed an application of the inverse property of 
multiplication and division, his articulation of it was impressive. It should be worth 
noting that several students from the same classroom as James produced well-
informed and articulate answers and were obviously well used to verbalising their 
reasoning and understanding. 
 At a different point of the interview James used the term “add a zero” when he was 
multiplying by ten. When probed about the notion of “adding a zero” he was able 
articulate that by adding a zero you were actually “timesing by 10”. Initially using the 
phrase “add a zero” may suggest a naïve understanding of what happens to a number 
when multiplied by ten. However, when asked what the answer was to 3.6 multiplied by 
10, James did not over-generalise this rule, he stated: “I can’t add a zero onto the end of 
this ’cause that just makes the fraction longer.” He was then asked if that made the 
number any different, to which he replied, “No it doesn’t make it any different, so I just 
move the six one space up, past the… um… decimal point… to make it 36.” James 
showed a sound understanding in that he talked about moving the digit one place 
rather than moving the decimal point, and he was very aware that adding a zero to 3.6 
did not alter the magnitude of the number, that is, 3.6 is equal to 3.60. Another 
observation which can be made was that James related the numbers to the right of the 
decimal point as being fractions, something which not all students did. Later he 
expressed that two point six meant two and six-tenths. He further explained that 
“timesing by ten is basically having a number line, like you’d have the millions, one 
hundred thousands, ten thousands, down to one and then into the fractions”. Although 
he may have used the term number line a bit loosely, James strongly indicated a 
knowledge of the place value system. 
 When the conversation was steered towards division as a multiplicative situation 
James seemed equally relaxed. He referred to the inverse relationship between 
multiplication and division and how he employed multiplication when presented with 
division problems. He also explained that division does not always provide a smaller 
answer and used the examples of dividing by one and dividing by fractions. Again he 
talked about moving the number (digit) when dividing by ten and correctly articulated 
that the digit moves to the left and also mentioned that the resulting number was ten 
times smaller. When shown the card 8 ÷ 0.1 and asked to predict the answer James 
immediately answered with zero point eight (0.8). When asked to check this answer 
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using a calculator and seeing that the answer was 80, James responded by talking 
about being exposed recently in the classroom to some reasoning. He said that “the 80 
is a bigger digit but it’s actually smaller pieces.” He was asked to clarify and after a little 
hesitation he said, “You’d have how many ones go into eight, so you’d have eight ones. 
So you’d have eight ones and the ones are the parts. (A prompt: “How many parts?”). 
There’s 10… there would be ten.” James has reasoned that 10 ‘pieces’ per whole 
multiplied by eight gives a total of 80 ‘pieces’. As he had a conceptual understanding 
regarding fractions, decimals, place value and multiplication he was able to reason a 
construct by making connections through and with these understandings. 

Teaching experiences 
After the student interviews were carried out and analysed, it was decided to spend 
some time discussing the teaching experiences that James’ teacher could identify as 
contributing to the development of multiplicative thinking in this particular Year Five 
classroom. A taped semi-structured interview was undertaken and the following points 
emerged from this interview: 

• much time was spent on developing place value concepts and the role zero plays 
in place value; 

• there was a focus on discussions in the mathematics classroom; 
• the development of mathematical vocabulary was seen as important; 
• development of multiplication facts was seen as a reasoning activity as well as a 

fluency activity; 
• parents were involved in assisting students with their multiplication facts (and 

were shown how to do this); 
• division was introduced before multiplication and making connections between 

the two was seen as a priority; 
• students were given permission to learn at their own developmental stage; 
• fractions and decimal fractions were investigated together; 
• a lot of time was spent on building mathematical connections; and 
• a collaborative culture existed between the teachers in the school and there was a 

school vision of how to develop mathematical concepts. 
 As evidenced by the student interviews it was clear that this teacher was successful 
in developing multiplicative thinking in this Year Five class. One interesting point that 
arose from the teacher interview was the notion that the use of arrays was highlighted 
in the Year Four classes in the school and that the Year Five teacher was able to build 
on the work done in the previous year. This whole school approach was mentioned on 
several occasions during the teacher interview and was obvious during the student 
interviews, as the few students who took an entirely algorithmic approach to 
multiplication were all new to the school. 

Conclusion 
We are not suggesting that James is necessarily a typical Year Five student, but he is a 
Year Five student. It should be noted that to a lesser or greater extent, all of the 
understandings he articulated were also articulated by his peers. What James and his 
peers showed the authors was that multiplicative thinking is achievable in the primary 
school setting. The many mathematical ideas which underpin multiplicative thinking 
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are part of the primary curriculum and sound pedagogical practices can help the 
students towards developing a conceptual understanding of this vital piece of the 
mathematics jigsaw. 
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The following report presents an analysis of eight mathematics lessons in which 
students displaying alternative conceptions were lead to reconceptualise their own 
understanding. Similarities were noted between the approach used by the teacher 
for juxtaposing discrepant events with questioning in each of these incidents and 
Cognitive Change Theory, an approach used by science educators to address 
scientific misconceptions by creating cognitive conflict. Initial data indicates that 
this approach may be applicable during the explore phase of challenging lessons, 
encouraging student to think through their own ideas and accommodate new 
information. 

Introduction 
Educators often consider why students answer questions in mathematics incorrectly, 
particularly when those answers are commonly given by students in a wide variety of 
circumstances (Swan, 2001). While some incorrect answers are simply errors or 
miscalculations, others are thought to be set within deeper levels of knowledge and 
more problematic for learners to overcome (Ryan & Williams, 2007). The term 
misconception is used by some researchers to describe situations in which a learner’s 
understanding is considered to be in conflict with accepted meanings and 
understandings of mathematics (Barmby, Bilesborough, Harries, and Higgins, 2009). 
Other researchers object to this term because, while these ideas are technically 
incorrect, from the student’s viewpoint, the ideas expressed are logical (Sneider and 
Ohadi, 1998). In this paper the term alternative conceptions is used, expressing the 
viewpoint that these ideas form a natural part of the development of mathematical 
understanding (Swan, 2001). This paper reflects the viewpoint held by Hansen (2014), 
that rather than trying to avoid the development of these ideas by students in the first 
place, effective teaching identifies, exposes and confronts these ideas, enabling students 
to restructure their own thinking. 
 One important assumption underpinning this paper is that students actively 
construct their own understanding of mathematics and that, to be effective, students 
need to think deeply about mathematics, connect ideas and be challenged. This paper 
espouses a connectionist (Askew, Brown, Rhodes, Johnson & William, 1997) or 
parapositional (Adam & Chigeza, 2014) disposition, that effective teachers focus heavily 



KENNEDY 

72 

on the connections between concepts and use multiple teaching approaches as 
appropriate to the context. 
 A second important assumption is that when new information fits with what we 
already know it is assimilated within our existing conceptual understanding, but when 
it does not, we either reject the new information or accommodate it by changing our 
cognitive structures (Piaget & Inhelder, 1969). Posner, Strike, Hewson & Gertzog 
(1982) posited a theory for conceptual change in which an alternative conception which 
conflicts with new information, is modified or is no longer considered useful and is 
rejected as untenable.  
 This paper seeks to apply the lens of conceptual change theory to several 
mathematics lessons in which students displaying alternative conceptions were led to 
reconceptualise their ideas. 

Background 
Hattie (2009) expresses the belief that a learner’s construction of knowledge and ideas 
is more important than the knowledge or ideas themselves. This construction, termed 
conceptual understanding by Bereiter (2002), connects both surface and deep 
knowledge to create a schema by which a learner interprets new ideas. Wenning (2008) 
explains that learners interpret new experiences and information in the light of these 
existing schema, grafting new understandings onto prior conceptions. He theorises that 
when new concepts do not fit within a learner’s schema these are likely to be forgotten 
or even rejected, leading to his conclusion that addressing a learner’s alternative 
conceptions in science is critical for the development of understanding.  
 Conceptual change theory (Posner et al., 1982) proposes a process by which a 
learner’s existing conceptions may be replaced by more robust ideas. According to this 
theory, new information which conflicts with a learner’s pre-existing schema is 
introduced to create cognitive conflict or disequilibrium (Piaget & Inhelder, 1969; 
Resnick, 1983), so that “the learner recognises inconsistencies between existing beliefs 
and observed events” (Swan, 2005, p. 7). As these inconsistencies are recognised, 
learners choose which of their ideas make the most sense and accommodate those that 
conflict by constructing new connections and changing their conceptual understanding 
(Piaget & Inhelder, 1969). 
 One approach that shows promise for applying conceptual change theory to the field 
of science education is Erilymaz’s (2002) protocol for conceptual change discussion. In 
this model, teachers use challenging problems to identify students’ alternative 
conceptions. This identification, termed ‘exposure’ by Erilymaz, involves predicting the 
results of scientific experiments as well as attempts at solving problems. Exposure is 
followed by conducting the scientific experiments, or ‘discrepant events’, during which 
students observe outcomes that conflict with their predictions. Teachers use 
questioning to help students focus on this discrepancy, increasing the level of cognitive 
conflict and encouraging students to grapple with the inconsistencies observed. At a 
definable point during this discussion cognitive conflict reaches disequilibrium, 
whereby students reject their initial predictions and accommodate the new 
information, addressing their own alternative conceptions in the process. 
 Erilymaz’s approach, while originally designed for science educators, shares some 
common features with the Launch–Explore–Summarise (LES) structure designed by 
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Lappan, Frey, Fitzgerald, Friel and Phillips (2006) for using challenging tasks within 
mathematics lessons. Both approaches begin with the posing of a challenging problem. 
The explore phase from the LES structure, in which students experiment with and 
discuss ways to solve the mathematical problem posed is also mirrored in Erilymaz’s 
structure, with scientific experimentation used as discrepant events to provoke student 
exploration and cognitive conflict. Both approaches also draw on student discussion, 
with a plenary summarising phase led by the teacher that draws together different 
student ideas and formalises knowledge. Just as challenging tasks following the LES 
structure have been found to encourage students to think deeply about mathematics 
and “connect different aspects of mathematics together, to devise solution strategies for 
themselves and to explore more than one pathway to solutions” (Sullivan, Askew, 
Cheeseman, Clarke, Mornane, Roche & Walker, in press, p. 6), so Erilymaz argues that 
posing problems combined with discrepant events in science lessons can encourage 
students to connect different concepts, explore ideas and change their own conceptions. 
 Longfield (2009), extends Erilymaz’s work on discrepant events to mathematics and 
history lessons, concluding that these were useful for motivating students to re-
examine their thinking, becoming active participants in their own learning and creating 
new knowledge for themselves. Longfield also suggests that this approach to conceptual 
change theory may be useful for addressing alternative conceptions in mathematics. 

Theoretical approach 
Within conceptual change theory three steps for learning are considered essential (e.g., 
Mayer, 2008; Luciarello, 2014). The following three steps for learning form the basis 
for the lesson analysis in this report: 

1. The learner recognises an anomaly in their thinking, with a rising awareness 
that his/her current conception is inadequate to explain observable facts. This 
step involves using discrepant events to create cognitive conflict, thereby 
“motivating students to re-examine their thinking about previously held ideas 
and beliefs” (Longfield, 2009, p.266).  

2. The learner actively constructs a new model that is able to explain the 
observable facts. 

3. The learner uses the new model to find a solution to a problem. 

Methodology 
Eight mathematics lessons in which the researcher used the LES structure to pose and 
explore challenging problems with students in each of the grades from prep to grade 
seven were recorded using three video cameras and four microphones. As literature on 
how to assess conceptual change is limited (Jonassen, 2006), 20 incidents were 
selected from these lessons in which all of the following steps took place: an alternative 
conception was identified, discrepant events were juxtaposed with questioning to 
prompt accommodation, the student actively created a new model of understanding 
and the student generalised this model to solve both the initial challenging problem 
and a new, more difficult problem.  
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The selected incidents included: 

Table 1. Incidents selected for examination using cognitive change theory. 

Prep: Three incidents: Two involving number conservation (to five) and one involving 
partitioning of single digit numbers. 

Grade one: One incident: Relative size of numbers to 10. 

Grade two: Three incidents: One involving number conservation and two involving 
partitioning of two-digit numbers into tens and ones. 

Grade three: Three incidents: One involving relative size to 10, one with relative size to 100 
and one with relative size to 1000. 

Grade 4: Three incidents: One involving the equivalence of halves, one involving the 
comparative size of triangles and rectangles and one involving the use of the 
term “quarters” to mean any fraction that was not halves. 

Grade 5: Three incidents all involving decimal numbers: One in which students thought 
tenths were the same size as ones, one in which students thought tenths were 
the same size as halves, and one in which students thought that 0.7 was the 
same as 1/7. 

Grade 6: One incident: Involving the commutativity of multiplication. 

Grade 7: Three incidents all involving Proportional Reasoning: One involving the 
equivalence of halves and two involving the equivalence of thirds. 

 
 For the purpose of this paper, discussion is limited to three incidents: one from each 
of Prep, Grade 3 and Grade 4. For each of the three incidents selected, the video and 
audio recordings were synced to create an audio-visual record that captured multiple 
viewpoints. Each incident was then transcribed, with additional annotations included 
for student actions as well as still images captured from the video feed to illustrate 
expressions and movements. Similarities between the incidents were noted and 
examined, to identify actions, questions, statements and expressions that met any of 
the criteria described in the previous paragraph. An analysis of the juxtaposition of 
discrepant events with questioning is included in the results section. 

Results and discussion 
Data from the audio-visual record and transcripts indicates that the following five 
phases were present in each of the incidents analysed: 
Phase 1: An alternative conception held by one or more students was identified by 

the researcher and confirmed at least twice using a challenging problem. 
Phase 2: Students predicted the results of a discrepant event before it was carried out 

and then observed a different outcome to that predicted. The researcher 
juxtaposed multiple discrepant events (minimum 13 events) with 
questioning to build cognitive conflict.  

Phase 3: The student discarded his or her alternative conception and accommodated 
the new information to create a new conceptual model. The researcher 
prompted students to explain this change in ideas. 

Phase 4: The student used his or her new model to successfully solve the initial 
challenging problem. 

Phase 5:  The student generalised this new model to answer at least one more 
difficult question that required the new understanding. 
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Further analysis focused on the interplay between discrepant events and questioning 
and the creation of cognitive conflict during phases two and three of the selected 
incidents. Findings are summarised in Table Two below. 

Table 2. Discrepant events, questioning, cognitive conflict and accommodation in three 
incidents during which students discarded their alternative conceptions. 

Discrepant events observed: Most commonly occurring 
questions: 

Incident 1: Prep students thought that five counters would no longer be five when they were 
moved. One student predicted four different amounts when the same five counters were shaken in a 
cup (initially six, then three, four and finally two). Following the incident one student stated, “It will 
still be the same amount—none fell out.” A second student added further explanation stating, 
“You’re not magic!” 

13 discrepant events: 
• Shaking the counters in a cup, predicting how many there 

would be, tipping these out and counting them (5 times). 
• Placing five blocks on a desk and moving these around 

into different spatial arrangements. Predicting how many 
there would be, counting these and discussing why there 
were still five (4 times involving different arrangements, 
with multiple times counting each, 8 events altogether).  

• How many will there be now?  
• So you think the number of 

counters will change each time? 
• How many are there really? You 

count them for me. 
• Did it change?  
• It’s still five? But I thought it was 

going to change? 
• Did I shake it wrong? Is there 

something else I could try? 
• How come it didn’t change?  
• Is there a way that you could move 

the blocks so that there wouldn’t be 
five?  

Incident 2: Grade three students thought that 100 would be half way on a number line between 
one and 1000. The line was constructed from masking tape on the floor (5m long). Following the 
incident, the students successfully self-corrected their initial prediction and successfully placed 
several three-digit numbers on the line in their correct positions. 

39 discrepant events: 
• Students were given 200, 300 and 400 to place on their 

line, then 900, 800, 700, 600 and 500. They observed that 
there was not enough space and moved the 100 to the ¼ 
position between one and 1000 (8 events). 

• Students and teacher stepped out the line, counting in 
hundreds to observe that there was a large space between 
the 1 and the 100. Students moved the 100 a little closer to 
the one but maintained a relatively larger space between 
the 1 and 100 compared to the other hundreds (4 events). 

• Students were asked to explain why they left a larger space 
between one and 100. They stated that they were leaving 
room for the tens. Students were given 10, 20… 90 to place 
on their line. They moved the 100 back to the middle of 
the line (9 events). 

• Students were given 110, 120, 130 and 140 to place on 
their line. They expressed confusion and tried to move the 
200 closer to the 1000. Students were given 210 and 310 
to place on their line. Students stated that the line was too 
short (6 events). 

• The students counted in tens between each hundred, 
identifying how many tens were in each and considered if 
there was enough space for all of the tens (9 events). 

• Students removed the tens from the line and stepped it out 
again (3 events) before finally moving the 100 to the 
correct position. 

• Where do you think (this number) 
goes? Note: This question was 
asked more than 30 times with 
different numbers and in slightly 
different ways throughout the 
incident. 

• How about 200, 300, 400… 900? 
• Does that look right to you? (Asked 

when students started to look 
quizzically at the line) 

• Which bit looks funny? How come it 
looks funny? 

• Can you make it look right please? 
You move the blocks until it looks 
right to you. 

• Tell me about this space? 
• How many tens are there in here? 

How many in here? 
• How about this space? Aren’t there 

any tens in here? 
• What do you notice about all the 

spaces? 
• How big is 100 compared to 1000? 

Is it a really big number? Is it about 
half way? Well where do you think 
it goes then? 
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• That looks pretty different to where 
you originally had the 100. Tell me 
about why you changed your mind. 

Incident 3: One grade four student thought that when two congruent, right-angled triangles were 
joined to make an isosceles triangle, this was larger than when the same two triangles were joined to 
form a rectangle. This focused on informal representations of area rather than calculating area of 
triangles. Following the incident the student solved the initial problem and also applied this solution 
to area problems for other shapes. 

32 discrepant events 
• Both the isosceles triangle and rectangle were formed on the 

desk using four congruent, right-angled triangles (two for each 
shape). The boy thought the triangle was bigger. The pieces of 
the rectangle were shifted to form a second isosceles triangle 
identical to the first. The boy stated, “Now they’re the same”. 
This position was not maintained when the pieces were shifted 
back to form the two different shapes. The child explained this 
by stating, “The triangle is always bigger than the rectangle.” (2 
events) 

• Swapping one of the right-angled triangular pieces from the 
rectangle with an identical piece from the triangle. The boy 
thought that the triangle would still be bigger (1 event). 

• The pieces of the rectangle were rearranged to form a 
parallelogram. The boy decided that this was confusing and 
picked up the triangle to cover the parallelogram so that he 
could compare them. He stated with some surprise, “They’re 
kind of the same size.” The teacher then rearranged the pieces 
in the triangle to exactly overlay the parallelogram, at which 
point the boy said, “Now they’re the same” (2 events). 

• The pieces were moved apart by 2 cm. The boy decided that 
now they were smaller. The teacher drew his attention to look 
at the whole area by reminding him that he got to “Eat both 
bits of cake” in each situation. He maintained his position, 
saying, “They’d still be the same size if they’re together, but if 
they’re separated that means this one (touches the joined 
shape), that means this one’s bigger.” (2 events) 

• The teacher moved the separated pieces by tiny amounts, 
asking the boy to choose which was bigger each time until the 
pieces touched, forming the original triangle instead of a 
parallelogram. He maintained that the pieces were smaller 
until they touched, at which point this changed to “bigger”. The 
pieces were separated (“smaller”), then joined (“bigger”) 
multiple times (14 events). 

• Each piece was picked up and rotated rapidly in the air. The 
boy stated, “You’re just shifting it”. Both pieces were picked up 
and rotated simultaneously. He maintained that they were just 
being shifted. Then the pieces were joined together rapidly to 
form each of the different shapes examined so far. The boy 
stated, “You’re making it bigger”. The teacher drew his 
attention to this discrepancy by asking, “Bigger than the two 
pieces on their own?” While he answered, “Yes”, the pitch of his 
voice rose indicating that he was questioning his idea (6 
events). 

• The paper was returned to the desk and shifted to form a 
variety of shapes. The teacher asked, “Am I changing the 
amount of paper?” The boy decided that the amount of paper 
wasn’t changing. Following some more pointed questions, the 
boy stated, “They’re the same size.” When the situation was 
changed he maintained, “This one looks bigger, but they’re the 
same size” (5 events). 

• Which one’s the biggest now? 
• How about if I shift them like 

this, which one’s the biggest 
now? 

• Now they’re the same? Ok, how 
about if I shift this one? Which 
is the biggest now? 

• This one’s bigger now? How 
about if I swap these bits? 

• The triangle’s bigger than this 
one? 

• How about if I move them like 
this?  

• So now they’re kind of the 
same? 

• What if I move the pieces 
apart? 

• So if the pieces are touching it’s 
the same size, but if they’re 
separated you think it’s 
smaller? 

• Now it’s bigger? 
• Now it’s smaller? 
• (picks up a piece and rotates it 

in the air) Am I changing the 
size of it? 

• How about this one? Am I 
changing the size of it? 

• How about if I put the pieces 
together, but you get to have 
both pieces either way? 

• So now it’s bigger than the two 
pieces on their own? 

• Am I changing the amount of 
paper? 

• So I have more paper if I move 
them like this? 

• How much paper is there? 
• Does it matter how I arrange 

the pieces? Does that change 
the amount of paper? 

• So you think they look 
different, but actually they’re 
the same size? 
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 Of particular note to the researcher was the nature of the questioning within phases 
two and three. As a student’s alternative conception was identified, the questions 
became more pointed, exposing the disparity between prediction and observation. 
During a 30-second discussion in the grade four incident, the teacher asked, “Now 
they’re the same? Ok, how about if I shift this one? Which is the biggest now? This 
one’s bigger now? How about if I swap these bits? The triangle’s bigger than this one?” 
These questions required the student to make a choice and then observe the outcome of 
that choice. Successive questions formed sequences which appeared to narrow the 
available options and produce a logical process by which a student’s idea could be 
evaluated. The questions in these phases both created and increased the cognitive 
conflict as a student confronted his or her own conceptions. At an identifiable moment 
during each incident this conflict appeared to peak, reaching a tipping-point of 
disequilibrium whereby the student acknowledged the disparity between his or her 
observations and preconceptions and then resolved this disparity by reconceptualising 
his or her own ideas.  
 Initially this use of narrow, pointed questions within an otherwise challenging lesson 
structure seemed incongruous. However, these questions appeared to provide students 
with a logical process for confronting and changing their own conceptions. If 
conceptual understanding links both surface and deep learning as learners construct 
their own understandings (Bereiter, 2002), perhaps approaching alternative 
conceptions from a connectionist perspective (Askew et. al, 1997) and integrating 
pointed questions and disparate events into a challenging problem provides a way 
forward. 

Conclusion 
This paper presents data that indicates that conceptual change theory can be applied to 
challenging mathematics lessons, enabling students to change their own minds and 
alter their own mathematical conceptions. Discrepant events and questioning can be 
juxtaposed to create cognitive conflict, leading students to discard their alternative 
conceptions and accommodate new information. The five phases identified in this 
report were found to be common in twenty discussions across eight recorded lessons in 
which students who displayed alternative conceptions demonstrated cognitive change.  
 Some cautions are wise at this point, including considering who is doing the 
thinking—the teacher or the student. It is important within this process to ensure that 
the student is genuinely changing his or her own thinking, rather than leading student 
to the “right” answer. Balance and sensitivity is needed on the part of the teacher to 
ensure that questions scaffold student thinking only as much as is necessary to build 
cognitive conflict to the point of disequilibrium and achieve cognitive change. For 
alternative conceptions to be genuinely addressed, students need to change their own 
minds. 
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LEARNING WITH CALCULATORS: 
DOING MORE WITH LESS 
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It seems that calculators continue to be misunderstood as devices solely for 
calculation, although the likely contributions to learning mathematics with modern 
calculators arise from other characteristics. A four-part model to understand the 
educational significance of calculators underpins this paper. Each of the four 
components (representation, calculation, exploration and affirmation) is 
highlighted and illustrated, mostly with relatively unsophisticated modern 
calculators such as those widely accessible to students in Years 6–10, but also 
recognising some calculator features not available to younger Australian students. 
Intelligent use of calculators at these levels of schooling offers many opportunities 
for students to develop a solid understanding of key aspects of mathematics 
through their own actions, provided our apparent obsession with calculators as 
merely ‘answering devices’ is overcome. 

Introduction 
Although the hand-held calculator is now almost fifty years old, it was not until around 
forty years ago that the first versions became available in schools in Australia. 
Unsurprisingly, in view of the name ‘calculator’, these were used mostly to undertake 
awkward calculations, including those of interest to scientists and engineers. Indeed, 
the first calculators to be used routinely in schools from the late 1970’s were called 
‘scientific’ calculators, apparently for that reason. At that stage, a calculator was 
described as ‘scientific’ when it included functions that had previously required the use 
of printed tables, such as those for logarithms, exponentials and trigonometric 
functions. Calculators offered a way for students to undertake numerical calculations 
efficiently and accurately. The efficiency arose from the speed of computation, 
compared with alternative methods, while the accuracy arose from superiorities of 
calculators over four- or five-figure tables in printed books. 
 A key purpose of this paper is to highlight the limitation of continuing to regard 
calculators solely as devices for handling (or even for avoiding) arithmetic. Much has 
changed, both in education and in technology, since the introduction of calculators, but 
it seems that much educational thinking about calculators continues to be stuck in the 
1970s. Summarising the extensive and overwhelmingly positive research on calculators, 
Ronau et al (2011) noted that efforts are now needed to focus attention on effective uses 
of calculators in classrooms, towards which this paper is offered. 
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Developments in technology, education and assessment 
There have been many developments in technology over the past forty years. The use of 
sophisticated technology has become commonplace for many Australians. This 
technology includes: many kinds of Internet resources; computer software, including 
apps, some of which are specifically for mathematics; devices such as laptops, tablets 
and smartphones; classroom technologies such as digital projectors, interactive 
whiteboards and wireless Internet. All of these have come at a cost, sometimes with 
equity implications, so that some schools and their students are equipped with 
essentially all of these resources, while others have access to very few of them. 
 Assessment has moved more slowly, partly for equity reasons, but mostly for 
security reasons, especially in high-stakes assessment, so that very few of these 
technological developments have been entrenched into curricula and most are 
prohibited from use in examinations. The exception is the hand-held calculator, 
versions of which are acceptable for external examination purposes throughout 
Australia and hence are likely to be available to essentially all students for almost all of 
the time. This paper explores the potential of calculators for supporting the learning of 
mathematics, especially in the primary, middle and early secondary years.  

Developments in calculators 
Calculators have also developed considerably over the past forty years. At a macro level, 
two major changes have included the development of graphics calculators (through the 
addition of a graphics screen and many mathematical capabilities to scientific 
calculators) and CAS calculators (through the further addition of computer algebra 
systems to graphics calculators). In addition, and importantly, calculators for younger 
students have been developed. Developments of these kinds reflect an important, but 
often unrecognised, change. Rather than being tools for scientists and engineers, 
calculators have been developed almost entirely as tools for mathematics education 
since they were first invented. 
 Changes to calculators have had educational purposes. This is especially evident in 
the development of more sophisticated calculators, such as graphics calculators and 
CAS calculators, both of which are best regarded as custom-designed technologies for 
mathematics education, not for professional scientists and engineers. But it is no less 
evident in the development of less sophisticated calculators, including those for 
students in the middle years and early secondary years of schooling. Amongst the 
developments that have clearly been designed by manufacturers to meet the needs of 
learners are the following: 

• Consistent use of the conventional rule of order so that entering 2 + 3 × 4 into a 
calculator and generating the result will give 14 (instead of 20, which is still the 
case for many calculators and phones not designed for education). 

• Improvements in user interfaces, such as multi-line displays allowing users to see 
what has been input into the calculator, as well as the result. Similarly, typical 
calculators can show earlier calculations and calculator inputs efficiently. 

• The use of conventional mathematical symbolism. Perhaps the best examples of 
this are the representation of fractions with a horizontal vinculum and of powers 
in the form of superscripts. 
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• Mathematical functionality that matches typical school mathematics curricula. 
The development of surd and fraction capabilities and the development and 
improvement of capabilities for statistics are the most obvious examples for 
scientific calculators. The development of graphing and geometric capabilities are 
perhaps the most obvious examples for graphics calculators.  

 These and other similar changes were not developed with the needs of professional 
scientists and engineers in mind; rather they were consciously developed to suit 
students learning mathematics.  
 In addition to functionality refinements and improvements, calculators have become 
significantly less expensive over recent decades. Roughly speaking, a scientific 
calculator for school in the mid 1970s cost around one day of average weekly male 
earnings; these days, a considerably improved scientific calculator for schools will cost 
around an hour of average weekly male earnings, a remarkable drop in forty years.  

A model for calculator use in education 
A key purpose of this paper is to describe and defend a model for calculator use in 
mathematics education. This is essentially an analytical matter, rather than an 
empirical one, and requires some consideration of how students learn, as well as how 
they are taught, as well as a study of calculator capabilities. 
 It also requires a consideration of what mathematics is—what it comprises. Indeed, 
the development of calculators has raised this question to some prominence, as there 
seems to be a widespread view (at least in the wider community, if not in the education 
community) that numerical calculation is the essential characteristic of mathematics. 
Many people seem to make the association of mathematics with arithmetic, in both 
directions: seeing lots of numbers is interpreted by many people as mathematics (even 
when that is clearly not the case, as in accounting). Conversely, mathematical activity is 
regularly (mis)understood as producing answers in the form of numbers. 
 The model described here is based on extensive work completed to support the 
educational use of scientific calculators by Kissane & Kemp (2013). In the following 
four sections, different ways in which calculators might be used are described. It is not 
suggested that students are restricted to using their calculator in only one of these ways 
at any time; in fact, frequently more than one use will be involved in a single activity. 

Representation 
Calculators represent mathematical objects and concepts increasingly well, at least in 
the sense that the representation on a screen is increasingly faithful to the 
representation on other media. Figure 1 shows some examples of this claim. 

   

    

Figure 1. Developments in representing fractions, powers and radicals on scientific calculators. 
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This is clearly beneficial to younger learners, removing previous disconnections of 
calculator representation and representation in textbooks or whiteboards, and 
eliminating the task of needing to interpret what is on the screen or juggle with syntax 
problems. For older learners, more sophisticated calculators similarly are increasingly 
likely to use conventional representations, rather than more complicated expressions, 
as illustrated in the calculator screens in Figure 2. 

       

Figure 2. Calculator representation of more sophisticated mathematical expressions. 

A calculator does more than merely represent mathematical objects, however. By the 
nature of its operation, a calculator allows for objects to be ‘re-presented’, or presented 
again. As shown in Figures 1 and 2, calculators dynamically respond to inputs (shown 
on the first line of the display) with outputs (shown on the second line of the display). 
While this has routinely been dismissed as ‘calculation’ in the past, it is important to 
recognise that it is a much more important activity than that, and a source of 
stimulation and thus learning for thoughtful or curious users. Figure 3 shows some 
examples for fractions and decimals, which are key ideas in the middle years of 
schooling. 

       

Figure 3. Re-presenting fractions, decimals and division. 

With help from teachers, students can be supported to become both more thoughtful 
and more curious and use such representations offered by calculators to increase their 
understanding about Number: fractions and decimals are merely different ways of 
representing the same number; the same number can be represented with fractions in 
many different ways; divisions can be represented as fractions; and so on. 
 For younger students, for whom decimals and fractions are not yet comfortable 
ideas, integer division operations on calculators provide a different representation, as 
shown in Figure 4. In this case, the symbolism using R for remainder is not universal in 
mathematics, although the concept of division with remainder is important, and a 
necessary precursor to the later idea of a division producing a fraction. 

       

Figure 4. Representing division of whole numbers with remainders. 

 In some cases, calculators routinely transform representations from one form to 
another, while in other cases, users need to assist this process (such as through the use 
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of a fractions to decimals key, for example). More sophisticated transformations give 
rise to opportunities to learn other aspects of mathematics, as illustrated in Figure 5. 

       

Figure 5. Further examples of re-presentation on calculators. 

It is of central importance that when integers are represented as a product of their 
prime factors, only one representation is possible (which is quite different from 
representing a decimal as a fraction). The representation of √20 as 2√5 is sometimes 
referred to as simplifying  (although in one sense, it might not be unreasonable 
thinking of it as complicating !); such exact transformations on calculators are 
regrettably concealed from many younger learners by Australian examination rules, 
although they are routinely available to students with graphics calculators and CAS 
calculators. While the third screen in Figure 5 shows an example of relevance only to 
more sophisticated students studying complex numbers, it illustrates the same point 
that calculators routinely transform inputs to outputs that can be used as good starting 
points for students to learn about the mathematics involved. 
 Space precludes a fuller treatment of this matter. Users of graphics calculators will 
be well aware, however, of the immense power of representing functions in multiple 
ways, in the form of symbols, tables and graphs—the so-called ‘rule of three’—and the 
many learning opportunities these provide for students. While scientific calculator 
screens are too small to represent graphical objects, many can represent functions in 
two of these ways, using symbols and tables, as shown in Figure 6. 

    

Figure 6. Representing a function symbolically and numerically. 

 Since the 'new maths' changes in the 1960s, the idea of a function has been regarded 
as of central importance in school mathematics, so it is not surprising that a device to 
support learners might be designed to represent functions. In Figure 6, a function has 
been defined and tabulated and the table can be scrolled easily to overcome the 
limitations of screen size, allowing students to engage with the representation of a 
function as a set of ordered pairs. (Scientific calculators with such capabilities are not 
generally approved for high stakes examination purposes in Australia, however.)  

Computation 
While it is unhelpful to restrict thinking about calculators to their capacity to undertake 
numerical computation, it is important to recognise nonetheless that such a capacity is 
helpful for students; indeed, this was the initial attraction of calculators to mathematics 
education nearly forty years ago. One possible reason for the widespread confusion of 
computation with mathematics is that it is of practical importance, and almost 
everyone recognises that mathematics is 'useful' for everyday purposes. A calculator 
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allows students to obtain numerical answers to understood problems, and is the 
sensible means of doing so when it is too difficult, tedious or inappropriate to use 
alternative methods, such as mental arithmetic, approximation or by-hand 
computational methods. All modern curricula, including the Australian Curriculum 
(ACARA, 2015), expect students to develop expertise with a range of computational 
methods, including use of a calculator. 
 Arithmetical computation is known well enough to not require illustration here, 
beyond noting that students with a calculator have the means to undertake accurately 
and efficiently any practical computation that they understand. Hence practical 
mathematics with real measurements and real data can be undertaken, rather than be 
restricted to a pretend world where measurements are always in whole numbers and 
angles restricted to the (remarkably) few for which exact trigonometric ratios are 
known. Indeed, without such a computational capability, students are unlikely to have 
access to mathematical modelling of contexts of interest to them, or statistical analysis 
of realistic data from everyday sources. 
 It is also worth noting that computation on calculators may offer more than 
arithmetical convenience, however. Calculators may render some previous 
computational methods obsolete, or at least redefine them to be of interest mostly as 
historical curiosities, rather than essential components of learning. Obvious examples 
of this are long division and the extraction of square roots by hand. Less obvious, so 
contestable, examples might include Gaussian elimination and numerical integration.  

       

Figure 7. Solving simultaneously 2x + 3y = 7 and 5x – y = 2 on a calculator. 

Few would argue that it is not important for students to understand the logic of 
Gaussian elimination to solve systems of equations such as that shown in Figure 7. Yet 
the extent to which students should be restricted to undertaking it by hand, and need to 
spend the considerable time to develop fluency in what is essentially a tedious and 
error-prone algorithm (instead of spending time on other aspects of mathematical 
thinking) is much more contestable. 

Exploration 
While faithful representation of mathematical ideas is helpful—even provocative—and a 
capacity for numerical calculation is essential, it is the role of the calculator as an 
exploratory device that offers the most promise for educational gain. As calculators are 
small, personal and responsive, students can use them to explore mathematical ideas 
and relationships for themselves in a low-risk and efficient environment. Good teachers 
have long known that purposeful engagement with mathematical ideas is a key element 
of learning. A calculator provides opportunities of that kind. 
 To illustrate, consider the concept of equivalent fractions, of central importance to 
young learners. With suitable encouragement, students can see that there are many 
fractions that have the same value, as shown in Figure 8. A productive task here is to 
challenge students to find still other fractions that are equivalent to three quarters. 
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Figure 8. Some fractions that are equivalent to three quarters. 

In addition, students can easily check for themselves (using a fractions to decimals key) 
that each of these has the same decimal representation, as do other equivalent 
fractions, as illustrated in Figure 9. The calculator provides a fertile and responsive 
environment for students to explore equivalent fractions for themselves. 

      

Figure 9. Equivalent fractions have the same decimal representation. 

As another example, consider students learning about indices. A calculator allows 
students to explore the meaning of powers, and its consequences, especially when 
factors of numbers can be efficiently revealed. Figure 10 shows some examples in which 
a factor command has been used to decompose a result in ways that seem likely to help 
students make sense of what is going on (as distinct from merely calculating answers). 

       

Figure 10. Exploring and understanding powers. 

Exploring powers on the calculator will provide students with an opportunity to see 
some of the important relationships for themselves. This can be left to chance with 
undirected exploration, or may be provoked by suitable tasks. For example, the 
calculator screens shown in Figure 11 all offer opportunities for productive reflection or 
discussion by students, with a focus on understanding what is happening. Notice in the 
second and third screens that the results obtained are not what many students might 
expect, but potentially lead to a deeper understanding of rules for indices. 

       

Figure 11. Further explorations of integral powers. 

At a still later stage, students can explore powers further and in more sophisticated 
ways to see for themselves the generality of the relationships involved when fractional 
powers (much less intuitively meaningful than integral powers) are used.  
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Figure 12. Exploring fractional indices. 

In Figure 12, the calculator is being used to explore the concepts and the relationships 
involved. There is no suggestion here that the calculator is the ultimate preferred tool 
for undertaking most calculations with indices, but rather it is an intermediate tool for 
helping to make sense of them. At some point, students will also encounter more 
formal treatments of the mathematics involved (such as formal arguments for rules). In 
addition, they should later recognise that 75 × 73 = 78, rather than use their calculator to 
determine such a product. The calculator is a means to an end, not the end itself. 

Affirmation 
The fourth aspect of the model for calculator use involves affirmation, concerned with 
users reassuring themselves in some sense about the quality of their mathematical 
thinking. Sound use of a calculator should always involve the user having some sense of 
what to expect or some intuitions about a likely result. Good teachers have routinely 
encouraged students to think about results before entering them in their calculators, as 
a form of checking, but it is possible to be more systematic on this matter. 
 An early form of affirmation, still sometimes seen in printed material, is for students 
to complete calculations mentally or by hand and to then check their efforts with a 
calculator. When the focus is on developing manual expertise with computation, this 
might be a defensible, although low-level, activity. Context is important here: while it 
would not be appropriate to use a calculator as an alternative to learning or checking 
recall of tables (such as 7 × 8), it may be a sensible use in developing and practicing 
mental or approximate methods of computation (to handle tasks like 7.24 × 6.1).  
 There are more sophisticated uses of verification, however. Some calculators have a 
Verify mode, explicitly designed for students to check their thinking in some sense. 
Figure 13 shows some examples of this, in which a response of 'True' or 'False' is shown 
for the given inputs. In these examples, the user is checking their own thinking, not 
relying on the calculator to generate the original responses. 

       

Figure 13. Using Verify mode to check thinking. 

In the first example, the calculator is being used to refine approximate mental 
computation skills. In the other two examples, the key idea is that of an identity, one 
meaning of an equals sign. In a class of students, instructed to give different values to 
the variables involved, the critical idea of a variable is involved. (Indeed, if some 
students assign a value of zero to either A or B, the exceptional case of equality will be 
produced, and the expression declared true, for an interesting discussion point). 
 This idea of affirmation might also be invoked more generally, even when a Verify 
mode is not available. On a graphics calculator, identities can be powerfully explored by 
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comparing tables and graphs for functions thought to be the same. This is more 
difficult on a scientific calculator, but the example in Figure 14 offers a possible 
mechanism (using a calculator with a capacity to tabulate a pair of functions 
simultaneously, a nice feature available on all graphics calculators, but generally not 
available on calculators for Australian schools). 

       

Figure 14. Exploring the identity: sin 2x = 2 sin x cos x. 

 These examples are not meant to suggest that the calculator's purpose is to 
undertake such computations, and nor is the calculator sufficient to establish the 
mathematical results involved. Rather, the calculator is being used to affirm students' 
thinking—or to disconfirm it, of course—and thus help to provide a means of making 
sense of the mathematics involved. Ultimately, a formal argument is needed to 
establish an identity; the calculator is used to motivate the need for such an argument. 

Calculators and curriculum in Years 6 to 10 
The few references to technology made by the Australian Curriculum: Mathematics 
(ACARA, 2015) seem to suggest that digital technologies are regarded as computational 
devices, through the repetition of the phrase, ‘with and without digital technologies’ in 
Content Descriptions. Yet a careful reading (by the author) of the Number substrands 
for Years 6 to 10A, suggests that learning related to 37 of the 38 Content Descriptions 
can be supported and enhanced through the careful use of a modern scientific 
calculator, many more than are flagged in the official documentation. It seems 
opportune for teachers and students to take advantage of these potentials, using tools 
that are widely available to students. 

Conclusion 
Significant changes to calculators since the 1970s have rendered them as purpose-built 
devices to support the learning of mathematics, in addition to undertaking 
computations. The model described in this paper is offered to clarify the precise ways in 
which that educational promise might be fulfilled, through exploiting the calculator’s 
capabilities for representation, computation, exploration and affirmation. 
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The Mathematical Association of Victoria has just finished trialling its cross–
curricular gambling issues project. The four curriculum areas covered in this two- 
to three-week project are English, Social Education (Civics and Citizenship), Health 
Education and Mathematics. 
This paper outlines the mathematics unit, twelve lessons which cover all the 
probability and statistics content of Year 9 and 10 of the Australian Curriculum. 
Three key messages are independent events (‘chance has no memory’, 
misconceptions), expectation equals probability times payout, and variability (how 
the spread of a punter’s return on the ‘pokies’ drifts away from the break-even 
point as the number of trials increases). 

Why get involved? 
The Mathematical Association of Victoria took on this research project for the following 
reasons: 

• Gambling is an issue—and mathematics education is important to understanding 
and attitudes. 

• There was some dissatisfaction with the mathematics of previous attempts, where 
‘odds’, ‘bookies odds’ and ‘payouts’ were confused and where important 
mathematical content was overlooked.  

• The cross-curricular cooperation required for such a project had not previously 
been sufficiently supported by parallel units of work embedded in the required 
content of each curriculum area. Few teachers felt confident to take on the whole 
task themselves. 

• Assessment is important. Assessment of the effect of the project on student 
attitudes to gambling has been lacking in previous projects. The trial used pre-
and post-activity questionnaires for this purpose. (The statistical analysis of 
results is at present incomplete.) ‘Biggest Loser’ also incorporates assessment 
against the requirements of the Australian Curriculum in all four curriculum 
areas.  

• Involvement has been encouraged and supported by the Victorian Responsible 
Gambling Foundation. 
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The mathematics unit Biggest Loser 
The mathematics unit covers all the probability and statistics content of Year 9 and 10 
of the Australian Curriculum. For Year 10A standard deviation could easily replace the 
inter-quartile range of box plots. Interpretation of bi-variate data and correlation is 
included in the Social Education unit. In the 2014 pilot program one school used the 
mathematics unit within its program for the Victorian Certificate of Applied Learning 
(VCAL)  
 A typical lesson in the mathematics unit involves simulated gambling, firstly with 
dice or cards and later with random numbers and a spreadsheet. The lesson culminates 
in an important discussion of results and, where appropriate, the relevant theoretical 
probability. Teachers conduct their lessons in ways that suit the availability of 
technology to their classrooms and the extent to which they might encourage open 
student investigation. Worksheets are provided for teachers who would prefer more 
focussed student work.  
 The unit’s title, ‘Biggest Loser’, makes it clear that, in gambling situations, the 
punters lose and the ‘house’ or ‘bookie’ wins. Key contexts are poker machines and 
sports gambling (football, women’s sports and racing). Real payout data is provided for 
sports gambling lessons, but the teacher can easily access data that is more recent or of 
more interest to the students. 
 Three recurring themes in the mathematics unit are independent events, long-term 
expectation and understanding of variability.  

Independent events 

Gambling simulations, firstly with dice or cards and later with random numbers in 
spreadsheets, can reveal common misconceptions and contradictions that many 
students (and adults) can reveal in their understanding of independent events. The 
message we want to get across is ‘Chance has no memory’, with students eventually 
releasing themselves from ideas such as: 

• A run of losses won’t continue for long. It will even out soon. 
• Better to go for a large prize than a smaller one, since the gain is greater if you 

win. 
• There is a pattern in the results, if only I can find it. 
• Many people are winning: it’s my turn soon. 
• I am a lucky person but haven’t had a lucky day for a while. I feel lucky now. 
• I have the power to ‘will’ my numbers to come up. 
• When I lose it is just bad luck—or the machines are rigged. 
• I deserve to win. Maybe I will today. 
• Using skill in gambling I can get good results. 

 The last lesson in the mathematics unit offers students initial results from six poker 
machines and asks them to write about which of the machines they would choose for 
the next set of results. Their responses reveal how well they now understand the 
concept of independence. 
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Long-term expectation 

The gambling context is ideal for introducing the important concept of expectation. The 
key equation is:  
 

Expected long term return to the punter = payout × probability 
 
where ‘payout’ is the amount returned to the punter for a winning bet of $1. (The 
author finds it disappointing that this equation is not mentioned in the Australian 
Curriculum: Mathematics; discussion of ‘risks worth taking’ cannot proceed without 
it.) 
 In the ‘Lucky Colours’ simulation punters bet $1 on their choice of four possible 
colours. 

• With a payout of $4 the game is agreed to be ‘fair’, with  

Expected return = $4 × 
 

1
4

 = 100% 

• With a payout of $3, the game is agreed to be ‘unfair’, with  

Expected return =$3 × 
 

1
4

 = 75%  

and thus an anticipated overall 25% loss on bets placed.  
 
 Extended simulation allows students to see how close this theory is matched by the 
outcomes of simulation. The teacher provides real data from various gambling sites and 
students calculate to find interesting patterns and variations in the long term expected 
losses. An example is the following data taken from weekly betting on AFL football. 
 

Fremantle $1.16 vs Carlton $5.25 
 
Given reasonable assumptions, the probability of Fremantle winning is thus  

 

5.25
1.16+ 5.25

= 0.819  

Hence the expected return on a $1 bet is $1.16 × 0.819 = 95 cents. Over a large number 
of bets the betting agency thus plans to gain 5% of all bets placed. 
 A more complex example is early betting on the 2015 Australian Open Tennis 
Women’s Tournament. A well-known betting agency offered a $3 payout for the 
favourite, Serena Williams. The bet to payout ratios for all players summed to 1.275702, 
rather than to 1, so using assumptions based on this information the probability of 
Serena winning can be adjusted to 1/3 ÷ 1.275702 = 0.26129  
Thus a ‘fair’ payout would have been 1/0.26129 =$3.83, 
and the expected return to punters on the Australian Women’s Open is 

1/1.275702 ≈78%, a 22% expected loss on the total bets placed. 

Understanding of variability  

Understanding of variability is a concept vital to informed citizenship yet ignored in all 
but the most senior secondary courses that cover binomial probability distributions. 
Two things an informed citizen should know are:  
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• a random sample of no more than 2000 is sufficient to obtain, with about 1% 
accuracy, the results for the whole population—no matter how much larger it is 
than the sample; 

• the longer a punter plays an unfair gambling game the less chance they have of 
breaking even. 

 In one of the key mathematical activities a simulated poker machine is set at 85% 
expectation and, with the press of the spreadsheet’s recalculate button, a new set of 
results for 1000 $1 bets is obtained. Students repeat this simulation enough times for 
reliable box plots, such as the following, to be developed. 

 

 In this simulation the payout was set at $4, and 23 data points were collected. For 
the first box plot:  
No wins out of 10 gave a loss of $10, or –100% of $10. This was the minimum value. 
At the other extreme, 6 wins out of 10 gave a profit of $24 – $10 = $14 or 140% of $10. 
With the probability of a win set at 85% of 1/4 = 0.2125 it is not surprising that, in the 
23 trials, there was never a case of more than 6 wins out of 10. 
 The key conclusion for the students is that as the number of games increases the 
variability tightens so much about the expected value that the possibility of ‘breaking 
even’ becomes more and more remote. The teacher can note that the spread of the 
distribution is inversely proportional to the sample size, so the 1000 games box is 
approximately one tenth the width of the 10 games box. The key message is: 

Short term gain? (a possibility) Long term pain! (a virtual certainty). 

 The Australian Curriculum: Mathematics 

The gambling issues unit has been designed as a vehicle for covering all the key 
concepts of Years 9 and 10 of the Australian Curriculum. (For Year 10A students 
standard deviation can be employed instead of box plots to interpret variability.) Two 
additional simulations—followed by theoretical analysis—are also required: 
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Australian Curriculum The Gambling Issues context 

2 step chance experiments 
– with replacement 

Two games of Lucky Colours, with various payouts – 
simulated results confirmed by theoretical analysis 
through tree diagrams 

2 step chance experiments 
– without replacement 

A quinella bet in a well handicapped race (Stawell Gift?) 
With 8 runners, the probability of picking the first two (in 
any order) is 1/28 

Evaluating the trials 
Qualitative feedback from participating teachers has indicated some success in dealing 
with misconceptions that students have had in their attitudes to gambling. Quantitative 
analysis involves data from pre- and post-unit questionnaires and questionnaires from 
control groups of Year 10 students in the same school. At the time of writing the results 
of this analysis are not yet available. 

The product 
The units have been edited in response to feedback from trial schools and in 
anticipation that the materials may be used more widely—at other year levels and in 
other states of Australia. The materials comprise approximately 35 lessons, with 
worksheets and spreadsheets as appropriate, together with copies of relevant files of 
key reports and data. For information on availability of these materials contact the 
Mathematical Association of Victoria. For discussion, talk to Dr Ian Lowe, MAV 
Professional Officer. 

Further reading 
Money, R., Lowe, I. & Smith D. (2015). Biggest Loser Gambling Curriculum Project. Mathematical 

Association of Victoria. 

Australian Government Productivity Commission (2010). Gambling: Productivity Commission Inquiry 
Report. 

Brown, H. (2013). A review of gambling-related issues. City of Greater Dandenong. 

Delfabbro, P. H. & King, D. (2012). Gambling in Australia: experiences, problems, research and policy. 
Addiction, 107, 1556–1561 

Delfabbro, P. H., King, D. & Griffiths, M. (2012). Behavioural profiling of problem gamblers: A summary 
and review. International Gambling Studies, 12(3), 349–366. 

Rintoul, A. C., Livingstone, C., Mellor, A. P. & Jolley, D. (2012). Modelling vulnerability to gambling related 
harm: How disadvantage predicts gambling losses. Addiction Research and Theory 21(4), 329–38.  

Money, R., Smith D. & Lowe, I. (2014). Biggest Loser Project. In Maths Rocks, Annual Conference 
Publication. Brunswick, Vic.: Mathematical Association of Victoria. 

Smith, D. (2012). Discussion of broader issues in teaching about the mathematics of gambling. In J. 
Cheeseman (Ed.), It’s my maths: Personalised mathematics learning. Proceedings of the MAV 49th 
Annual Conference (pp. 264–276 ). Brunswick, Vic.: Mathematical Association of Victoria. 
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Useful websites 
http://www.qgso.qld.gov.au/products/reports/aus-gambling-stats 

The Queensland Government Statistician’s Office is the source of Australian Gambling Statistics (AGS). 
This is a comprehensive set of statistics related to gambling in Australia, covering the entire range of 
legalised Australian gambling products. The publication has been produced since 1984, and is compiled 
annually by the Queensland Government Statistician's Office in co-operation with all Australian State 
and Territory governments. This 30th edition incorporates information on all legalised gambling in 
Australia up to and including 2012–13. 

http://www.responsiblegambling.vic.gov.au 
The Victorian Responsible Gambling Foundation is an independent Victorian statutory authority whose 
objectives, functions and powers are detailed in the Victorian Responsible Gambling Foundation Act 
2011. It is a first contact point for data and research on gambling in Victoria. Similar authorities exist in 
some other States and Territories. 

http://www.gamblingandracing.act.gov.au 
The ACT Gambling and Racing Commission. 

http://www.iga.sa.gov.au/aboutiga.aspx 
South Australia’s Independent Gambling Authority. 

http://www.ilga.nsw.gov.au 
Independent Liquor and Gaming Authority, NSW. 

http://www.justice.qld.gov.au/corporate/about-us/liquor-gaming/gaming 
About gaming in Queensland, Queensland Government Department of Justice and Attorney General. 

http://www.treasury.tas.gov.au/domino/dtf/dtf.nsf/v-liq-and-gaming 
The Tasmanian Government Department of Treasury and Finance Liquor and Gaming Office. 
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The concept of limit is an example of a concept created from mathematicians’ 
thinking, but it also has reasons for its appearance, and contains interesting ideas 
behind it. It has the potential to develop into a knowledge system and relate to real 
life. The problem in teaching concepts like this is how to approach them and what 
aspects need to be considered by students to understand the inner ideas of a 
concept and how they can apply them. Using a constructivist approach and the 
support of several dynamic models, this study developed tasks that support 
students not only in constructing the concept of limit but also in understanding 
reasons for its existence, the ideas contained in it, and in applying those ideas in 
solving problems creatively. 

Introduction 
The concept of limit is one of the most basic concepts of calculus. Difficulties in solving 
physical problems and mathematical paradoxes provided the impulse for the 
development of this concept. However, it took mathematicians a long time to have a 
complete and exact definition. Elements of this idea appear early in the mathematics 
curriculum in schools, such as concepts of ‘transition through limit’ and thinking of 
‘infinite and continuous’ which are implicit in the calculation of the circumference of a 
circle as the limit of the perimeter of the inscribed polygons. Thus, some elements of 
calculus are introduced implicitly through students’ learning of algebra and arithmetic. 
These factors allow us to clarify the fundamental difference between algebra and 
calculus by looking at the kind of thinking, methods and technical characteristics 
involved. The emergence of the concept of limit has formed the foundations for the 
development of calculus. All the major concepts of calculus such as derivative, 
continuity, integration, convergence and divergence are defined by the language of 
limit. Limit also serves as the fifth operation which signals the ‘transition through 
limit’. These show the importance of the concept of limit and its complexity. Instead of 
taking a textbook approach to these topics, this paper endeavours to change the 
presentation of the concept of limit to explain the connections between the concept of 
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limit in mathematics and its contact with real life. Ignoring these issues can cause 
difficulties for students who may often wonder: What is the interpretation of the 
concept of limit in reality? Does it have practical applications or not? These concerns, if 
not answered, hinder the implementation of students’ learning tasks. In this paper we 
focus on the following research questions: 
Question 1: Which examples can help illustrate the concept of limit?  
Question 2: How do students construct knowledge of the limit of sequence by 

experimenting on dynamic mathematical models?  
Question 3: How do students discover the ideas contained in the concept of limit and 

connect them to real life? 

Research framework 

The idea of approaching the mathematical concept 
According to Thai (2015), how students receive and explore mathematical content is 
not confined by the framework of a school program, but also through different types of 
activities in various ways, including learning outside the school. Therefore, in the 
teaching of mathematics, besides a traditional academic approach which values the 
logic of mathematics as a deductive science, there needs to be a complementary 
approach which values and draws on the experiences of students. Students’ experiences 
can be used as a ‘bridge’ to mathematical language and can provide anchor points for 
developing and appreciating mathematical ideas. 
 How can we express the logic of mathematical sciences and use students’ experience 
in learning? Each concept has a scientific basis forming it, so showing its existence and 
clarifying its role will help us solve the above-mentioned problems. However, to help 
students learn actively, activities assigned by teachers should be constructed on the 
experience of students. This is necessary primarily to help students see the concept in 
more familiar terms, thus reducing abstraction. Also, students usually perform better if 
they understand the task and if they are assisted to discover knowledge by themselves. 

Aspects need to be considered when teaching concepts 
According to Thai (2015), it is not enough to teach students a concept in isolation. They 
need to know its location and its role in the system. This helps students understand the 
importance of the concept in the system and to see its relationship with other concepts. 
This is also a way to create a sustainable knowledge. Therefore, when considering each 
element of knowledge, Thai (2015) argues that each element of knowledge should be 
referenced by three dimensions: 

• here is it in any position in the overall picture of mathematical science, and is it 
consistent with the trend of the development of mathematical science? 

• To meet the goal of teaching mathematics in schools, what is its role in 
developing students’ capacity to learn and do mathematics? 

• How are its relationships integrated with other disciplines? 
 We believe that teaching the concept of limit needs to reflect on the above aspects. 
First, we must see that the concept of limit has importance in mathematics. The 
concept of limit is used to construct other concepts of calculus such as continuous 
functions, derivatives, integrals and so on. The concept and its applications have 
provided us with many mathematical tools. Second, learning the concept of a limit in 
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calculus helps students see things from the perspective of a state of change. This 
contributes to developing their thinking capacity. Third, the concept of limit and the 
tools of calculus create opportunities for students to see relationships as more 
integrated and interdisciplinary, especially through concepts and problems associated 
with Physics and to solve those problems in practice. 

The development of mathematical concepts in the minds of students 
The problem about whether the ideas ‘really are’ mathematics is addressed by Nunes, 
Schliemann and Carraher (1993) who drew on Vergnaud’s (1990) theory of concepts to 
argue that concepts developing in a learner’s mind need always to be seen to have three 
aspects: invariants, representations and situations. ‘Situations’ make the concept 
meaningful. This aspect appears to be broad enough to include social situations (such 
as selling, sporting events, maths classes) and real or imagined problem-situations 
(Carraher, 1991, p. 178). ‘Invariants’ refer to the properties or relations associated with 
the concept, such as symmetry, commutativity, conservation of equality. 
‘Representations’ are based on the set of symbols (linguistic or non-linguistic) used to 
communicate or discuss invariants: “representations always involve keeping some 
features of the concept in focus, while losing sight of others” (Nunes et al., 1993, p. 145). 
This triple aspect of mathematical concepts allows Nunes et al. (1993) to argue that the 
invariants must be constant across thinking in different contexts, whereas its 
representations and especially related situations depend on particular contexts.  
 In creating learning environments, we use representations, including special uses of 
computer software to create dynamic models in teaching mathematics. Mathematical 
software as Geometer’s Sketchpad (GSP) can create dynamic images displaying the 
results of each change of variable. Well-planned use of such software is intended to 
provide opportunities for students to explore, to predict general properties, and to 
propose hypotheses that facilitate the creation of new ideas and help to solve problems. 

Research design 
In this research design, the following factors are key: the teacher design schedule, the 
teaching design idea, the design of mathematical tasks, data collection and analysis. 

Teacher design schedule 
In designing our teaching experiment and preparing teaching and learning activities, 
we adopted a constructivist learning approach following Confrey (1991) and Nam and 
Stephens (2014). The following four points indicate how we have combined the key 
ideas of a teaching experiment within a constructivist-learning framework. The teacher: 

• needs to focus on the important key conceptions of the limit of a function, not 
focusing too much on general teaching strategies or overall descriptions of the 
limit. For example, in introducing the limit of a function, we focus on such 
activities which make clear the process of confirming a given limit; 

• needs to have a clear plan on how to respond to students’ incorrect answers; 
• should have a long-term plan to consistently develop students’ deep 

understanding of the limit of a function; and 
• should utilise concrete examples that are familiar and easy for students to 

understand to help them understand the limit of a function and its relationships. 
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Teaching design 
The concept of limit is a difficult concept to teach, and there is no simple way to help 
students understand the definition all at once. Our teaching concept design is to start 
by creating activities to attract students’ attention, to motivate their learning, and to 
help them see the possibility of new knowledge. Next, create activities for students to 
understand concepts intuitively, and then to conduct activities to help students 
gradually understand a more precise definition. In the implementation of these 
activities, students obtain certain ideas related to the concept. Therefore, we designed 
some open-ended questions to provide students with an opportunity to propose 
innovative ideas. The plan is to create an ‘open space’ for students to see some hidden 
ideas behind the concept. Once students have developed the concept of a sequence 
having a limit of zero, we ask them to carry out a further task which is aimed to assist 
students in the process of forming the concept. The remaining activities ask students to 
use their knowledge of limit to construct new knowledge in the form of a formula for 
the lateral surface area of cone, and its volume; and to provide opportunities for 
students to apply the knowledge learned, while confirming the role of limit in practice. 

Design of mathematical tasks 

It is important to choose the tasks that are suitable for senior high school mathematics 
students. Tasks should be designed to encourage students' positive thinking and they 
need to connect the knowledge and experience of students. To help students 
understand the concept of existence of a limit, we designed the following tasks. 

Task 1 

A given model of a regular polygon n (n ≥ 3) has its edges inscribed in a circle. The 
value of n can be changed by dragging the tip of parametric slider n. By changing the 
value of the parameter n, it is possible to predict the result of area of polygon when n 
tends to infinity. 

 

Figure 1. Model of a regular polygon inscribed in a circle. 

 By manipulating models in this way, students realise that when n tends to infinity 
then the shape of a polygon nearly coincides with that of a circle. Therefore, the 
polygonal area is approximately the area of the circle, but the difference between them 
is always a very small value. Figure 1 shows the special relationship between the area of 
a circle and the area of the nth polygon. In order to involve students in the lesson, the 
teacher can ask, “What relationship do these concepts in mathematics express?” 
 Task 1 is designed to help students appreciate the existence of a concept in 
mathematics from a ‘dynamic’ point of view, which is that a circle can be considered as 
the limiting shape of regular polygons that are inscribed in it when the number of edges 
tends to infinity. This view is the basis for recognising that the circumference of a circle 
can be considered as a limit of the perimeter of a regular polygon. These images will 
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serve as a stepping stone to help students construct the concept of the volume of a cone 
from the volume of a pyramid. 

Task 2 

Introduction 

Given a sequence of numbers 
  
un = (−1)n

n
 displayed on a GSP screen. Each red dot in the 

graph describes two values, n and un. Red dots can be erased by pressing the Esc key on 
computer keyboard one or several times. The red dot (at E) is the current value of n. 
This value can be changed by dragging the tip of the parametric slider n 

 

Figure 2. The limit of sequence of numbers 

Four investigative questions 

Question 1. By changing the value of parameter n, comment on the change of un when n 
becomes larger. 

This question is to help students understand the concept intuitively that when n tends 
to positive infinity, then the sequence tends to zero. We let students conduct the 
following activities step by step to describe it correctly. 

Question 2. Give five values of n so that the distance between un and  is less than 
 

1
100

. 

Then complete Table 1 showing correlative values between n and |un – 0|. 

n      
|un – 0|      

  From what term onwards is the distance between un and  less than
 

1
100

?
 

This question is to help students define specific values of n such that the distance 

between  and  becomes smaller than 
 

1
100

This is a buffer step in implementing and 

understanding subsequent activities and also aims to help students get number 
intuition about the concept. 

Question 3. Find two natural numbers M which are larger than 100, and use them to 
complete Table 2 showing correlative values between n and M. 

M = __ 
After which term un, is |un – 0| < 

  

1
M

 = __? 

M = __ 
After which term un, is |un – 0| < 

  

1
M

 = __? 
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Question 3 is to help students build confidence that there always exists some N so that 
the distance between un and 0 is smaller. This activity is a prerequisite for the next 
question.  

Question 4. If 
  

1
M

 is changed to an arbitrary small positive real number ε , can we 

always find a natural number N so that for all n > N, the distance between un and 
 is less than ε ? Please explain your thinking.  

Question 4 is to help students understand the nature of a formal definition of the 
concept of a limit. 

Task 3 

Try to explain the meaning of equality in the statement, lim un = a. What does equality 
lim un = a remind you of from Task 2? 
 Task 3 aims to create new ideas during the process of formulation of the concept. 
Task 3 is to help students realise that the equation should be understood differently to a 
normal equation that students have learned in Algebra. It is not an ‘invariant’ relation 
of the equality of two numerical expression, but requires a new and flexible way of 
looking at what equality means in this context: the quantity changes around a and gets 
closer to a but it may never actually reach the value a. The second part of question 
provides opportunities for students to realise that hiding behind the concept of limit is 
the key idea that a number  can be seen as the result of a limit of a sequence. To help 
students to think about the applications of mathematics in real life, we pose the 
following situations where they have to use their knowledge to explain and solve; and 
from there recognise the relationship of a limit with real life. 

Task 4 

In real life, we often say “the probability that a son is born is 
 
1
2

.” Does this mean that 

for every 10 couples who each have a child, five of the children will be boys? Please 
explain. 

Task 5 

Given a model of a regular pyramid with its base inscribed in a circle of radius R, the 
number of edges can be changed by dragging the tip of parametric slider n. By changing 
the value of parameter n, 
a. Please comment on changes to the pyramid when the number of edges of polygon 

tends to infinity. 
b. Calculate the volume of the resultant cone if the height of the cone is h. 
Question (a) is intended to help students realise that when n tends to infinity, the 
regular pyramids tends to resemble a cone. Adopting a dynamic point of view enables 
students to see a cone gradually emerging from a pyramid when the number of edges 
tends to infinity. This prompts students to see that the volume of the cone can be seen 
as a limit of the volume of a pyramid when the number of edges tends to infinity. This 
leads intuitively to building a formula for the volume of a cone without having to make 
calculations based on the dynamic model. 
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Task 6 

Given a cone with a circle as its base with centre I and radius R, the height of cone can 
be changed by moving the point S on a line perpendicular to the plane containing the 
circle. 

 

Figure 4. Model of a cone. 

a. Change the position point S to reduce the height of the cone and comment about 
what happens to the cone if point S gradually merges to point I. State the 
relationship between the cone and the bottom circle. 

b. Can you then use this result predict a formula for lateral surface area of cone? 
 

Question (a) is intended to help students realise that the bottom circle is limit of the 
cone when S moves closer to zero. Question (b) requires students to use this dynamic 
idea to build up a formula for the lateral surface area of a cone. 

Research results 
In this section, we focus on the four results: interactions among students, teacher 
support to students facing difficulty, teacher handling of students’ correct results, and 
teacher responses to students’ incorrect results. 

Interaction among students 

Students belonging to the same study group presented their findings in order to 
contribute to a whole group conclusion. Each group evaluated other groups' results. 
Access to a dynamic model provided an opportunity for students to build knowledge 
and generate new ideas  

Teacher support for students facing difficulty 
In monitoring the implementation of group activities, if students had difficulties 
answering these questions, it was necessary for the teacher to pose additional questions 
or suggestions to support students’ thinking (Nam & Stephens, 2014)) 
 When performing Task 1, for example, when some groups did not mention results, 
we asked them to operate on the dynamic model by increasing the value of n, the 
number of edges of a polygon, and then to compare the area of the resulting polygon 
with the area of a circle. When performing Task 2 with a dynamic model some student 
teams only considered relatively small values of n. In such cases, we posed the question 
“If we make n larger, what will change?” But, by taking the slider off the screen, a 
difficulty occurred for some students. It could be resolved by asking students to 
consider unit reduction on the horizontal axis by moving the red dot to the left. 
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 When performing Task 3, to support students discovering the key idea, we posed 
questions like: “What is the left hand side? What is the right hand side?” The purpose 
of these questions is to help students see that “the left-hand side is the limit of a 
sequence, and the right hand side is a number”. From here, students could realise that 
they can see a number as a result of a limit of sequence. From this perspective students 
could appreciate a key mathematical idea which allows them to construct a new 

number, e, such that e = lim
  
1+ 1

n( )n . These results can give students access to an 

important operation in calculus, that is, ‘transition through the limit’. With this idea, 
when learning about the limit of a function, which is a continuous function, students 
can get the idea that discontinuous functions are considered as the limit of continuous 
functions. These results help the students to see the relationship between objects that 
may not seem to be relevant, such as a specific number and a sequence, or apparent 
opposites such as continuous and discontinuous functions. 
 When performing Task 4, which suggested that if ten children are born, five will be 
boys, many groups said that it is wrong. Of course, students realised that this is one 
possible outcome, but they face difficulty in explain how the probability would result to 

 
1
2

. To support students, the teacher posed questions like, “What kind of outcome is 

referred to when we speak of a probability of 
 
1
2

?” With this question, two groups 

identified this as a ‘statistical probability’. From here, students realised that 
 
1
2

 is the 

limit lim
 

ns

n
, where ns is the number of couples who give birth to a son, n is the number 

of couples have children, and n is very large number. 
 When performing Task 5, there were some difficulties in leading groups to identify 
the volume of pyramid. To assist students to calculate the volume of cone, we asked, 
“When the number of bottom edges tends to infinity then what becomes of the 
pyramid?” This suggestion helps students to recognise that the volume of cone is limit 
of the volume of pyramid when the number of bottom edges gradually tends to 
infinity”. Moreover, students already know the formula of the volume of pyramid is 

  
V = 1

3
Bh , where B is the bottom area, h is the height of the pyramid. However, the base 

of the cone is a circle of radius R, so the volume of the cone is 
  
V = 1

3
πR2h .  

 When performing Task 6, to help students have different points of view, we added 
the question: “Can we have different views on the relationship between the circle and 
the cone?” This question asks students to give responses like, “The bottom circle is the 
limit of the cone when its height h tends to  or the slant height l gradually to R.” The 
last perspective is the basis for the student's idea that “The bottom area of the circle is 
limit of the lateral surface area of cone when slant height tends to radius R”. 

Teacher processing of correct results 

When performing Task 1, the majority of groups correctly predicted the outcome, in 
which case, we asked them to explain their answer. Typical answers were: “When the 
number of edges tends to infinity then the polygon seems to coincide with the circle”. 
 When performing the Task 6, when students were asked to explain the formula of 
the lateral surface area of the cone, one group explained, “When increasing the height 
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of the cone from  to h, we can see a bottom radius (slant height) turn back into the 
slant height, while others remain the same radius. In the case l = R, Sxq = πR2 = πRR. 
We have “the lateral surface area of the cone is πRl.” The perception, again an intuitive 
result derived from the dynamic model, is not a guarantee of being correct, but its value 
gave students a way to build their knowledge. Such awareness helps students see the 
dialectical relationship between mathematical knowledge and what students can 
reconstruct by themselves, even when they have forgotten the formula.  

Responding to students’ incorrect results 
In conducting Task 2, three groups said: “There will be a time when the points (n:un) 
are located on the horizontal axis”, and so concluded that “the distance between un and 

 becomes smaller and smaller and finally the distance is equal to ”. To help students 
recognise this kind of mistake, we asked students to enlarge the units on the vertical 
axis and to see how their image changes. Increasing the units on the vertical axis helped 
students recognise that when we magnify the vertical unit, points (n:un) are actually not 
on the horizontal axis. When performing Task 4, one group, when asked to explain its 
conclusion, answered, “Because the formula for calculating the probability that n(B) is 
the number of pairs of boys, n is the total number of pairs.” 

Conclusion 
The concept of limit is an abstract and sometimes difficult concept. But understanding 
this concept is essential because it not only plays an important role in mathematics, it is 
the basic concept to construct the system of calculus, as well as a tool to help us 
understand and explain things in real life. By teaching using the above tasks, we argue 
that a dynamic model provided an opportunity for students to build intuitive 
knowledge and to connect ideas from different areas such as geometry and probability. 
The dynamic model also helped students to see the variety of applications of the 
concept of limit such as: the base circle is the limiting shape of a cone when its height 
tends to zero; or the base circle is the limiting shape of a cone as its top approaches the 
centre of the circle. Aside from the correct answers, wrong or incomplete answers were 
also anticipated in our teaching design. These wrong or incomplete answers provided 
important opportunities for teachers to direct appropriate questions for students to 
move them towards a more correct understanding. 
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This presentation will discuss how Year 6 primary school students create algebraic 
meaning and syntax through their solutions of standard fraction problems. Sample 
solutions will show how students use ‘best available’ symbols to move beyond 
arithmetic calculation and to create innovative chains of algebraic reasoning. 
Several efficient and successful multiplicative methods are used to achieve this 
goal, in contrast to less efficient methods, usually additive, which may work only 
with simple fractions. Teachers need to recognise the underlying algebraic meaning 
emerging from students’ solutions and help all students use more efficient 
strategies and build their own bridges to algebra. 

Introduction 
Many researchers argue that a deep understanding of fractions is important for a 
successful transition to algebra. The National Mathematics Advisory Panel (NMAP, 
2008) stated that the conceptual understanding of fractions and fluency in using 
procedures to solve fractions problems are central goals of students’ mathematical 
development and are the critical foundations for algebra learning. Teaching, especially 
in the primary and middle years, needs to be informed by a clear awareness of what 
these links are before introducing students to formal algebraic notation.  
 Eighteen Year 6 students from an eastern suburban metropolitan school in 
Melbourne were assessed using a paper and pencil test. These students were chosen as 
they were deemed by their teachers to be highly successful in mathematics. The paper 
and pencil assessment included three fraction tasks (Pearn & Stephens, 2014) and two 
relational thinking tasks (Mason, Stephens & Watson, 2009; Stephens & Ribeiro, 
2012). This paper aims to identify and examine students’ responses to the three fraction 
tasks that demonstrate clear links between algebraic thinking and students’ solutions to 
fractional tasks involving reverse processes.  

Previous research 
According to Wu (2001) the ability to efficiently manipulate fractions is “vital to a 
dynamic understanding of algebra” (p. 17). Many researchers believe that much of the 
basis for algebraic thought rests on a clear understanding of rational number concepts 
(Kieren, 1980; Lamon, 1999; Wu, 2001) and the ability to manipulate common 
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fractions. There is also research documenting the link between multiplicative thinking 
and rational number ideas (Harel & Confrey, 1994).  
 Siegler and colleagues (2012) used longitudinal data from both the United States 
and United Kingdom, to show that, when other factors were controlled, competence 
with fractions and division in fifth or sixth grade is a uniquely accurate predictor of 
students’ attainment in algebra and overall mathematics performance five or six years 
later. They controlled for factors such as whole number arithmetic, intelligence, 
working memory, and family background. We need to extend these important findings 
to highlight for teachers those specific areas of fractional knowledge that impact 
directly on algebraic thinking. 
 Research conducted by Lee (2012) and Lee and Hackenburg (2013) with 18 middle 
school and high school students showed that fractional knowledge appeared to be 
closely related to establishing algebra knowledge in the domains of writing and solving 
linear equations. They concluded that “Teaching fraction and equation writing together 
can create synergy in developing students’ fractional knowledge and algebra ideas" (p. 
9). Their research used both a Fraction based interview and an Algebra based 
interview. The two interview protocols were designed so that the reasoning involved in 
the Fraction based interview provided a foundation for solving problems in the Algebra 
interview. In both interviews students were asked to draw a picture as part of the 
solution. For the Fraction tasks they were also asked to find the answer whereas in the 
Algebra tasks they were asked to write an appropriate equation but not solve it. 
Examples of one of each of the Fraction and Algebra Tasks are shown in Table 1 below.  

Table 1. Examples of tasks used by Lee and Hackenburg. 

Fraction Task Algebra Task 

Tanya has $84, which is 
 

4
7

 of David’s 

money.  
Could you draw a picture of this situation?  
How much does David have? 

Theo has a stack of CDs some number of 
cm tall.  

Sam’s stack is 
 

2
5

 of that height.  

Can you draw a picture of this situation? 
Can you write an equation?  

 
It is important point to note that the thinking required to solve these types of fractional 
tasks is similar to the kind of thinking required to “solve for x” in a corresponding 
algebra equation. This will be discussed later. Both the Fraction Task and the Algebra 
Task from the Lee and Hackenburg study (2013) shown in Table 1 cannot be solved 
additively, for example, by saying “I have to add another three-sevenths”. Lee and 
Hackenburg do not discuss the range of possible methods that students might use to 
solve the fraction task, presenting instead an example of a picture and associated 
comments by one student. Students are not required to solve the algebra equation  

(S = 
 

2
5

 T where S and T represent the number of CDs that Sam and Theo have). 

 Stephens and Pearn (2003) identified Year 8 proficient fractional thinkers as 
students who demonstrated a capacity to represent fractions in various ways, and to 
use reverse thinking with fractions to solve problems. This research also showed that 
effective reverse thinking depends on a capacity to apply multiplicative operations to 
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transform a known fraction to the whole. This capacity will later be fundamental to the 
solution of algebraic equations.  
 In this study we identify algebraic thinking in terms of students’ capacity to identify 
an equivalence relationship between a given collection of objects and the fraction this 
collection represents of an unknown whole, and then to operate multiplicatively on 
both in order to find the whole. Jacobs, Franke, Carpenter, Levi and Battey (2007) also 
emphasise the need to “facilitate students’ transition to the formal study of algebra in 
the later grades (of the elementary school) so that no distinct boundary exists between 
arithmetic and algebra” (p. 261). Three distinct aspects of algebraic thinking identified 
by Jacobs et al. (2007) and by Stephens and Ribeiro (2012) are important for this 
study. They are students’ understanding of equivalence, transformation using 
equivalence, and the use of generalisable methods.  

This study 
Unlike the Lee and Hackenburg study (2013) which used both a fraction interview and 
a separate algebra interview, this study is based on analyses of students’ performances 
in a single paper and pencil test. This test included relational thinking tasks using 
numbers and fractions, some corresponding algebraic (symbolic) tasks, and three 
fraction questions (Figure 1). The fraction questions required students to scale-up a 
given fraction to make a whole accompanied by equivalent changes in the quantities 
represented by the particular fraction. The relational thinking and symbolic tasks are 
shown in Tables 2 and 3. 
 Eighteen Year 6 students from an eastern suburban metropolitan school in 
Melbourne were assessed at the start of Year 6 using this paper and pencil test. These 
students were chosen by their teachers as deemed to be highly successful in 
mathematics. The paper and pencil assessment included three fraction tasks (Pearn & 
Stephens, 2014) and two relational thinking tasks based on Stephens (2010). All 18 
students were given the same three fraction tasks while, due to time limitations 
available for the written questionnaire, ten students were given the multiplication 
component and eight were given the division component tasks.  

The tasks 
The three fraction items specifically required students to use reverse or reciprocal 
thinking in which their task is to find a whole collection when given a part of a 
collection and its fractional relationship to the whole. We devised these three items to 
offer students opportunities to use more explicit algebraic thinking which was not 
needed in the earlier task relating to one-half. Specifically these three tasks required 
students to relate a given fraction to an equivalent number of objects, and when 
transforming the fraction to make a whole to carry out corresponding operations on the 
number of objects. These elements of algebraic thinking are explicitly embedded in the 
relational thinking tasks shown below in Tables 2 and 3. There, students need to use 
equivalence, compensation and/or transformation, and generalisation. 
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Fraction Task 1 Fraction Task 2 Fraction Task 3 

Figure 1. The three fraction questions. 

Each of the three fraction questions (Figure 1) was marked out of three. One mark was 
given for a correct response with no explanation, or if there was some evidence of 
correct diagram with an initial representation which the student did not take further 
(starting point). Two marks were given for a correct answer with limited explanation 
and three marks were given for a correct answer with adequate explanation. Zero was 
given when the question was not attempted or an incorrect response was given.  

Table 2. Sample items from the relational thinking tasks. 

 Question 1 Task 1 Question 1 Task 4 

Multiplication 36  ×  25  =  9  ×      3  ÷  4  =  15  ÷ 

Division 
 
2
3

 ×  = 1 
 
7
6

  ÷  = 1 

 
The four items in Question 1 of both the multiplication and division relational thinking 
test (Table 2) students were scored out of three marks. Students were asked to “write a 
number in the box to make a true statement and to explain their working briefly”.  

Table 3. Sample items from the multiplication and division component tasks. 

 Question 2 Item 2 Question 2 Item 4 Question 2 Item 5 

 When you make a correct 
sentence what is the 
relationship between the 
numbers in Box A and Box B 

What can you say 
about c and d in this 
mathematical 
sentence? 

What can you say 
about a and b in this 
mathematical 
sentence? 

Multiplication 

 
c ×  2  =  d  ×  14   

a × 
 
3
4

  = b × 1  

Division 

 

c  ÷  8  =  d ÷ 24 a ÷   = b ÷  

 
Question 2 of both the multiplication and division tests focused on students 
understanding of equivalence relationships with two unknown numbers represented by 
Box A and Box B, and by symbolic representations of two unknowns (see Table 3). 
Question 2 consisted of five items, four items worth three marks with one item worth 
two marks. The total possible score for the multiplication or division component was 26 
marks. In Question 2 for both multiplication and division questionnaires the tasks 
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included both whole numbers and fractions (Table 3). In Question 2, students were 
required to explain the relationships between the respective unknown numbers or the 
given symbolic representations (c and d; or a and b) . 

Results 
Table 4 shows the range of scores for the three fraction tasks. Fraction Tasks 2 and 3 
were found to be more difficult than Fraction Task 1 as shown in the mean scores. 

Table 4. Scores for the three fraction tasks (n = 18). 

 Score 0 Score 1 Score 2 Score 3 Mean 

Fraction Task 1 0 0 4 14 2.78 

Fraction Task 2 4 0 4 10 2.11 

Fraction Task 3 4 0 5 9 2.06 

 
Seven students scored nine out of a possible nine for the three fraction tasks. Six of 
these seven students scored between 23 and 26 on either the multiplication or the 
division items. The student who scored nine on the three fraction tasks only scored 17 
out of a possible 26 marks as her explanations for the division items were not adequate. 

Table 5. Scores for the multiplication/division algebraic thinking items (n = 18). 

Questions 1 & 2  Score < 10 11≤ score ≤ 17 18≤ score ≤ 22 23 ≤ score ≤ 26 

Multiplication 2 1 2 5 

Division 1 5 0 2 

Analysis and discussion 
In this section of this paper we will examine the strategies used in the three fraction 
tasks by the seven students who had a perfect score on the fraction tasks. All but one of 
these students scored between 23 and 26 on the multiplication /division algebraic 
thinking items. Since our focus in this paper is to identify instances of fractional 
thinking that could be classified as algebraic; namely, understanding of equivalence, 
transformation and/or compensation using equivalence, and use of generalisable 
methods, these seven students offered the best chance to show this. 
 The seven students identified above showed subtle differences in the chains of 
reasoning they employed and the symbols they used. All seven clearly recognised the 
connection between the number of objects and the fractional parts given in the 
problem. Responding to Fraction Task 1 (Figure 1) Student 5 wrote: “If I have 10 
counters now and that is two parts out of three …” In some cases, the connection 
between the number of objects and the fractional parts of the problem was implied. For 

example, when solving Fraction Task 1 (Figure 1) Student 3 wrote 10 = 
 
2
3

 meaning that 

the ten dots represented two-thirds of the whole group. Similarly when solving Fraction 
Task 2 (Figure 1) Student 1 wrote idiosyncratically that “12 = 4” implying that 12 CDs 
was the same as four-sevenths of the whole group. Student 4 gave a similar response for 

Fraction Task 3 when she wrote 14 = 
 
7
6

 in this case meaning that the 14 dots 

represented seven-sixths of the whole group. 
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 After making the connection between the number of objects in the group and the 
fractional part, students determined the number of objects in the unit fraction by 
dividing by the numerator of the given fraction. Student 5 (Figure 2) gives an 
elaborated verbal response, using equivalence between the 10 counters and “two parts 
out of three”. After that the student argues confidently from “two parts” to “one part” to 
“three parts” without needing to state the fractional value represented by each “part”. 
As each “part” is transformed so is the number of counters represented by each “part”, 
until the student correctly concludes: “You started with 15 counters”. 
 

 

Figure 2. Student 5 response to Fraction Task 1. 

 Student 6 (Figure 3) starts with a symbolic statement equating two-thirds as ten. 
The symbolism maybe called idiosyncratic but the mathematical meaning is perfectly 
clear. Like the previous student this student moves symbolically from two-thirds to 
one-third to three-thirds, at each step referring to the equivalent number of counters.  
 

 

Figure 3. Student 6 response to Fraction Task 2. 

 For the following two fraction questions, Student 6 creates the same initial 

equivalence by writing 
 
4
7

 = 12 and 
 
7
6

 = 14. In both cases Student 6 finds the unit 

fraction and scales up to find the whole. Recording is again idiosyncratic in both cases, 

for example 
 
1
6

 = 2 × 6 = 12 where Student 6 compresses two operations into one 

symbolic statement. 
 Other students’ written responses varied considerably as evident in the following 
examples of students’ successful working for Fraction Task 2. Student 2 (Figure 4) uses 
no verbal elaborations. The fraction four-sevenths is not stated explicitly but is implied 
in the division by four. In the second line the student states the equivalence between 
the number of objects and the fraction one-seventh. The third line shows the 
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transformation needed to go from one-seventh to a whole without needing to refer to 
the fraction. Student 2 uses an identical method in the other two fraction problems 
which has been generalised regardless of the particular fraction and the number of 
objects represented by the fraction. 

 

Figure 4. Student 2 response to Fraction Task 2. 

Student 1 (Figure 5) uses the equal sign in a way that some would deem incorrect. The 4 
that is written after the 12 refers to the numerator of the fraction, hence the division by 
4 to obtain 3. Multiplying by 7 is needed to transform one-seventh to a whole. The size 
of the fraction, although not stated, guides the reasoning to a correct solution in a way 
that is generalised by examining her responses to the other two fractional tasks.  

 

Figure 5. Student 1 response to Fraction Task 2. 

In Fraction Task 1 Student 1 says: 10 is 2 parts = 5 each × 3 = 15. In Fraction Task 3 a 
similar abbreviated chain of reasoning is written without words as 14 ÷ 7 = 2 × 6 = 12 
 Two other students show their response to Fraction Task 3. Student 4 whose work is 
shown in Figure 6 consistently used the same method for all three fractional tasks.  
 

 

Figure 6. Student 4 response to Fraction Task 3. 
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 Like the previous students, Student 4 starts with the symbolic statement equating 
the 14 counters with the fraction seven-sixths. She uses idiosyncratic symbolism but the 
mathematical meaning is perfectly clear. This student moves symbolically and 
systematically from seven-sixths to one-sixth to six-sixths, at each step referring to the 
equivalent number of counters. Student 4 states the answer in words e.g. “12 = number 
of counters started with”. 
 In the first fractional question (Figure 2), Student 5 uses an elaborated verbal 
description: “When I divided 2 parts by two I will get one part (10 ÷ 2 = 5) 1 part = 5) 1 
part × (multiplied) by 3 = 3 parts (5 × 3 = 15). You started with 15 counters.”  
 

 

Figure 7. Student 5. 

For Fraction Task 3 Student 5 (Figure 7) uses incorrect recording to reduce seven-

sixths to one sixth. Correct recording and execution is shown in: 14 × 
 
1
7

 = 2. The 

student’s next step 2 = 
 
1
6

 shows equivalence between two objects and one-sixth. The 

remaining two steps are then self-explanatory. In the second fractional question 

Student 5 repeats the incorrect recording shown in Figure 7 by writing 
 
4
7
÷ 1

4
= 1

7
 = 3 

CDs. Subsequent working correctly records and replicates the last two steps shown in 
Figure 7 demonstrating that Student 5 has a generalised method.  
 From the above responses it is evident that these Year 6 students know that they 
must move from any given fraction to its unit fraction and then scale up to one-whole. 
At the same time they keep track of the same operations on the number of objects 
represented by the given fraction. How they express their chains of reasoning vary from 
elaborated verbal descriptions to abbreviated mathematical expressions, sometimes not 
needing to refer explicitly to the fraction. They use “best available” symbols, especially 
involving the equals sign, to create and record their innovative chains of reasoning. We 
see these chains of reasoning as algebraic through students’ use of equivalence, 
compensation and generalisation. 

Conclusion 
Researchers such as Jacobs et al. (2007) have emphasised that the foundations for 
algebraic thinking are laid in the primary school years through deepening students’ 
understanding of number operations and relationships, especially through equivalence 
and compensation. The focus of their research has almost exclusively been on whole 
number operations. As a result, many teachers may think that students’ thinking about 
fractions is not connected to the development of algebraic thinking. This is despite the 
fact that researchers such as Siegler et al. (2012) have demonstrated that competence 
with fractions is a unique predictor of students’ subsequent attainment in algebra. This 
study has shown why that might be so.  
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 It is important for teachers to move students in the upper primary years beyond 
more traditional types of fraction problems which limit students to calculating 
fractional parts of a known whole. The fraction tasks presented in this paper all require 
students to find an “unknown” whole when presented with a given collection which is a 
subset representing a given fraction of the whole. Having to use their rational number 
knowledge to find an unknown whole provides opportunities for students in the upper 
primary years to carry out chains of thinking that very closely mimic or resemble the 
kind of thinking that they will need later in the solution of simple algebraic equations. 
The same rules of equivalence and compensation apply. In both cases, students need to 
draw confidently on mathematical procedures that are generalisable. While later 
algebraic tasks will be explicitly symbolic, the fractional tasks discussed in this paper 
require students to develop their own repertoires of mathematical reasoning and to 
appreciate that these forms of reasoning can be expressed successfully in different 
ways. For this reason, we believe that the kind of fractional tasks discussed in this 
paper have high potential to provide a bridge to algebraic reasoning for all students.  
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The Progressive Achievement Tests in Mathematics (PAT Mathematics) were 
published by the New Zealand Council for Educational Research (NZCER) in 1972. 
Revised editions were published in 2005. During the 1980s the Australian Council 
for Educational Research (ACER) also developed a range of PAT tests, including a 
number of versions of PAT Maths. These are continually being revised and 
developed. This paper describes the construction of the actual items of these tests 
which have a multiple choice format. It will be shown how developing, and then 
using multiple choice questions can inform teachers about students' 
misconceptions in mathematics. It will also explore the 'what next' once the 
misconceptions have been identified.  

History of ACER PAT Mathematics 
The first edition of the Progressive Achievement Tests in Mathematics (PAT 
Mathematics) was published by the New Zealand Council for Educational Research 
(NZCER) in 1972. These tests were designed to enable schools to record student 
progress and help teachers to identify the needs of their students.  
 The tests were based on classical test theory (Lord & Novick, 1968, cited in deKlerk, 
2008) and achievement was reported in comparison with year level and age level 
norms (Darr & Stephanou, 2006). This method of reporting achievement was able to 
show how students compare to other students of equivalent age or year level. However, 
it could not be used to gauge the growth of an individual student over time, 
independent of the growth of other students.  

The PAT Maths scale 
In the 1980s, the Australian Council for Educational Research (ACER) developed a new 
range of PAT Tests based on Rasch Measurement. Rasch Measurement is a type of 
psychometric measurement, applied predominantly in the social, behavioural and 
health sciences, which enables a ‘latent trait’—a characteristic that is not directly 
observable or measurable—to be measured indirectly by a well-designed instrument 
that provides indicators of this latent trait. In the case of PAT Maths, the latent trait 
being measured is mathematical knowledge and skill. The degree of mathematical 
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knowledge and skill can be deduced indirectly from the responses to the test items (Wu 
& Adams, 2007; Lindsey et al., 2005).  
 The probability of a student getting a particular item correct is a function of that 
student’s ability (mathematical knowledge and skill) and the question’s difficulty. Using 
the mathematical model proposed by George Rasch, one can construct a measurement 
scale on which both item difficulties and student abilities can be displayed. Located 
higher on this scale are students with higher ability and more difficult test items. 
Located lower on this scale are students of lower ability and easier test items. Items 
from multiple test forms and year levels can be calibrated onto a single scale. Rasch 
Measurement can be used to track student progress over time, independent of which 
test form the student sat and the progress of other students. 
 Subsequent editions of the PAT Tests in Australia and New Zealand have continued 
to use Rasch measurement to produce and refine the PAT Maths scale.  

 

Figure 1. PAT Maths item distribution by year level on the single patm scale. 
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Structure of the tests 
The PAT Maths tests consist of a bank of multiple choice items. These are developed 
around the main content areas of mathematics: Number and Algebra; Measurement 
and Geometry; Statistics and Probability. Test items have been developed and trialled 
with students at different levels and are mapped to a single scale using a national 
norming study (Darr & Stephanou, 2006). 
 During a norming study, trialled test items are arranged into test forms. Test forms 
are linked by including common items in different test forms and also by administering 
two different test forms to the same student. The data are then analysed with the Rasch 
model, and the relative location of items on the scale is determined. This process is 
known as item calibration. Figure 1 shows the result of the item calibration for the PAT 
Maths 4th edition tests. Once the scale is finalised, it becomes possible to estimate 
student locations on the scale and obtain the distribution of student achievement by 
year level. Each PAT norming study involves a representative sample of schools across 
Australia, from all systems and states.  
 In the fourth edition, the PAT Maths scale has been divided into bands or 
achievement levels, each ten scale scores wide. The achievement levels are a convenient 
way to describe the development of mathematical concepts and skills as students make 
progress up the PAT scale. The achievement levels may also provide the basis for 
grouping students with similar mathematical skills and knowledge and similar learning 
needs in a particular content area, in order to provide them with more targeted learning 
activities. The achievement levels are arbitrary. They have been defined using intervals 
of ten scale scores simply to make them easy to remember. There are no distinct 
boundaries that separate one level from another. Teachers can form groups based on 
different scale score intervals if they prefer. 

Using assessment effectively to inform and improve teaching 
and learning  
Figure 2 shows the results of the PAT norming study. It can be seen that there was a 
wide spread of achievement within any one year level and a large overlap in 
achievement between year levels. It also shows that on average, growth in learning is 
more pronounced in the early years and smaller growth is observed in the middle and 
later years of schooling. A similar pattern of achievement is observed in other large 
scale standardised assessments both within Australia and internationally (ACARA, 
2011; Dadey & Briggs, 2012; Welch & Dunbar, 2014). For example, the national report 
for Australia's National Assessment Program in 2011 states that: 

  Findings similar to this (less gain over later year levels) have been reported for other 

assessments in Reading and Numeracy that report data on a scale that has been vertically 

equated. Gains are smaller in later years of school than in earlier years of school. (ACARA, 2011, 

p.342) 

 The PAT Tests have been designed to reflect this. That is, adjacent test forms contain 
many items of similar difficulties and there is a spread of difficulty from very easy items 
at the beginning of the test form, to quite difficult items towards the end of the test 
form. 
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Figure 2. Distribution of student achievement on the pat scale  
by year level of students in the norming study. 

By using PAT scale scores rather than percentage correct, students' achievement can be 
compared even when they have completed different test forms. Their degree of progress 
can also be tracked more easily over their years of schooling by tracking their growth in 
scale score.  
 A key element for the effective use of PAT Tests is selecting a test form that is 
appropriate for the particular student—neither too easy nor too hard. An appropriate 
test for a student is one in which the teacher can reasonably expect that student to get 
about half of the questions correct. This would result in a scale score with the least 
amount of measurement error. Tests that are either too easy (the student gets all or 
almost all the questions correct) or too hard (the student answers most of the questions 
incorrectly) would have very high degrees of measurement error and could not be used 
to place a student accurately on the scale.  
 In the case of standardised tests such as PAT Maths, this would have implications 
for tracking of growth over time. However, more broadly, for all types of assessment, an 
assessment that is too easy or too hard would mean that one cannot easily locate that 
particular student's level of development and would therefore have difficulty obtaining 
accurate information about what the student can and cannot do in order to design 
appropriate learning tasks for that student. 
 Having a means of assessing and tracking student progress in mathematics learning 
has the potential to significantly impact the effectiveness of teaching and learning 
within the classroom. However, it is of little use if this data is only used for reporting 
purposes (assessment of learning) but is not used to inform teaching and learning 
(assessment for learning). When teachers use data from well-designed assessments to 
target instruction where students are most ready to learn, profound improvements in 
performance can occur (Griffin et al., 2013).  

Multiple choice questions in the PAT Maths tests  
Analysis of the PAT Maths questions can be used to inform teachers about students’ 
misconceptions in mathematics. Multiple choice questions generally consist of the 
question (stem), the choices provided (options), of which there is the correct answer 
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(the key) and several alternatives (distracters). Literature suggests that a ‘good’ 
multiple choice question uses simple language, examines only the important facts, has 
brief and clear questions, avoids the use of the negative, avoids distracters such as ‘all 
of the answers are correct’ or ‘none of the above’ (Frary, 1997; Brame, 2015; Croation 
Academic and Research Network, 2008).  
 Mkrtchyan (2011) argues distracters are an important part in the development of 
multiple choice questions as they provide credibility to the test and provide important 
information about the test taker. Each distracter should be based on a common 
misconception about the correct answer and should be plausible (Mkrtchyan, 2011; 
Brame, 2015).  
 There is much debate around the number of distracters to include, and if there is 
indeed an optimal number. Rodriguez (2005) argues that three distractors are optimal 
for multiple choice questions and presents an in-depth study of the past 80 years of 
research illustrating this empirically. There are other arguments stating there is no 
psychometric advantage of having a uniform number, especially if the options become 
implausible (Frary, 1997; Haladyna & Downing, 1989; cited in Rodriguez, 2005).  
 There are many advantages for using multiple choice questions including that they 
are easier to mark, can be administered in an online form (Mkrtchyan, 2011) and can be 
machine marked if required. Objections to the use of multiple choice questions have 
included those that feel there are no tools or processes to analyse information or data 
about non-functioning distracters (i.e. distracters that only a very small percentage of 
students choose); there is always the possibility of guessing the answer (even with some 
statistical analysis designed to detect guessing); the options present a choice of answers 
rather than the test taker constructing the answer/response; and that they are 
simplistic and 'unable to test complex cognitive tasks’ (Athanasou & Lamprianou, 
2002, p. 463, cited in Ljungdahl & Prescott, 2009).  
 However, many researchers and educators (Little et al., 2012; Mehrens, 2004) 
counter this last objection by showing that, when multiple choice questions are well 
constructed, with a clear stem and plausible distracters that target student 
misconceptions, they can be a very effective way of fostering higher order thinking and 
quality learning. Furthermore, for PAT Maths test questions, all questions are trialled 
and non-functioning distracters are removed before final test forms are constructed. 
Figure 3 provides an example of a question. The different components of the question 
are labelled. The distracter reasoning is provided in the table below to illustrate the 
construction of the question.  

 
 
 

 

Figure 3. Sample question with option reasoning included. 

stem 

   key (correct 
answer) 

distracter distracter distracter 

distracter 
reasoning 
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Using the PAT Maths questions to inform teaching and learning 
PAT Maths ‘allows teachers to gain an insight into their teaching and their students’ 
learning’ (Cooney, 2006, p. 463, cited in Ljungdahl & Prescott, 2009). By using the 
data and reports from the PAT Maths tests, patterns can be observed and information 
about a particular student’s misconceptions can be determined. It is possible to analyse 
the data in terms of a whole class. For example, all students might appear to be 
struggling with a common question type, or they may all be having difficulties with a 
particular topic. Groups of students can be identified in a similar manner. This analysis 
can assist teachers in planning particular teaching content or organising students into 
particular groupings when addressing particular content or question types.  
 Analysis of the responses of a particular child to questions they have incorrect can 
provide teachers with ‘valuable diagnostic information’ (Ljungdahl & Prescott, 2009, p. 
462) when the multiple choice questions are carefully constructed. It is identified as an 
important step in understanding the assessment tool as well as improving teaching and 
learning (Crisp & Palmer, 2007). Examining a particular question and identifying the 
distracter the student has selected can provide teachers with an insight into the 
student’s misconceptions about a particular concept. This can be particularly powerful 
if a pattern emerges across a number of questions, allowing a common misconception 
to be identified and addressed. While an informative process, it is acknowledged that it 
is time consuming; hence to accompany the PAT tests, a PAT Resources Centre has 
been developed which includes Mathematics resources.  

Maths section of the PAT Resources Centre 
Hipkins (2006) states multiple choice questions ‘may be quite complex and challenging 
in the thinking sequences required’ (para 1). It is this distracter reasoning and 
interpretation that is used as the basis of development of the Mathematics component 
of the PAT Resources Centre. The PAT Resources Centre is an online subscription-
based portal, designed to meet the needs of teachers who have conducted PAT 
assessments. The mathematics area of the PAT Resources Centre consists of a large set 
of PAT Maths items that have been selected, and deconstructed. 
 For each of the selected items the key has been identified and distracter reasoning 
has been provided. This has been presented in the form of a table for readability. 
Naturally teachers could perform this task, and Hipkins (2006) argues the value in 
identifying and even discussing distracters in developing understanding. However, it is 
acknowledged that developing multiple choice questions, including distracters that 
reflect common misconceptions, is time-consuming and difficult (Mkrtchyan, 2011). 
Thus there is value in the test developers (the people writing the test questions) 
providing the distracter reasoning, as this may provide the teachers with an 
understanding of how and why questions were developed in a particular ways. 
 It is all very well to identify student misconceptions, but the ‘what next’ is just as 
important. To assist teachers in addressing the identified misconceptions, 
accompanying each of the questions and their option reasoning are the following 
elements in the Maths component of the PAT Resources Centre: the identification of 
key concepts and skills; the identification of prerequisite knowledge; and suggestions 
for moving forward. These are presented in the form of what are known as concept 
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builders–teaching activities and ideas that are provided around key concepts, often 
addressing common misconceptions and errors. These are not lesson plans, but are 
activities which could be used in whole class, small group and even in one-to-one 
situations. The identification that students may need to ‘take a step back’ to reinforce 
learning and understanding is supported with links to prerequisite knowledge of these 
concepts, acknowledging that many concepts form part of a learning continuum. 
Suggestions for moving forward are made for students who need the next challenge, but 
it is the further reading section sitting within the concept builders that supports the 
teacher’s own personal learning on different mathematics concepts. An example of a 
concept builder from the Resource Centre is provided in Figure 4 below. 
 

 

Figure 4. Sample concept builder. 

 Sometimes talking through the question and the options with the student is enough 
for them to understand or identify areas of difficulty, particularly with word-based 
problems. To assist teachers with the process, links have been made to Newman’s Error 
Analysis (White, 1999), identifying which of the five stages: Reading/Decoding, 
Comprehending, Transforming, Processing or Encoding (White, 2005) is illustrated by 
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a particular distracter. Support material around an interviewing process for teachers 
and question prompts are also used.  

The future of the PAT Resources Centre 
At the time of this paper only the Number and Algebra part of the portal is live. Already 
basic Google Analytic data is showing in excess of 26 000 page views of the site in the 
period of one month. There are two phases of development to now take place. The first 
is to continue developing each of the content areas (Measurement, Geometry, Statistics 
and Probability) and have them available on the site. The second is to perform an in-
depth study of the data from the pages viewed of the site, which may provide an 
indication of where students and/or teachers need support, the content areas for which 
they are seeking more information and questions that are proving to be a challenge.  

Conclusion 
Ljungdahl and Prescott (2009) argue that using distracter information from multiple 
choice questions can lead to assessment for learning, and aid teachers in developing 
students’ numeracy skills. The ACER Progressive Achievement Tests (PAT) are used in 
over 4000 schools across Australia to monitor progress in key skill areas. The tests for 
the content area of mathematics consist entirely of multiple choice questions, and 
although these items are placed on a scale providing a score for students, there is value 
in taking the time to examine the carefully constructed questions in terms of the key 
and the distracter reasoning in order to identify misconceptions and adjust teaching 
and learning where necessary to challenge these misconceptions.  
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Whiteboarding describes a distinctive method of teaching and learning where 
students work at large whiteboards that line the walls of a learning space. In this 
paper we report on the findings of a school-based research project into the benefits 
of whiteboarding in senior mathematics classrooms and the connections this 
project has prompted with the university where this particular method originated. 

Introduction 
Asked during a school-based professional learning workshop to list our most significant 
learning experiences, we nominated the unique tutorials we had experienced as 
undergraduate students at La Trobe University in the early 1980s. The tutorials were 
unique because they were conducted in rooms without chairs or tables and with all four 
walls lined with large blackboards. At the start of the tutorial the class would be given a 
worksheet of problems and we would proceed, in pairs, to try to solve them on the 
blackboards. To students used to a regular dose of lectures followed by relatively large 
practical classes, where it was easy (and sometimes convenient) to be overlooked, this 
was initially a daunting experience. This was particularly so because our problem-
solving techniques, or lack thereof, were always on public display. 
 It did not take long, however, for us to realise that everyone else’s work was on 
public display as well. This brought about a small revolution in the way we learned: we 
began to discuss, share, and even passionately argue about the mathematics we 
encountered in our tutorials. We were also utterly engaged; it was impossible not to 
participate actively.  
 Fast forward 30 years to a school-based research project at Penleigh and Essendon 
Grammar School in Melbourne’s inner western suburbs, which focussed on replicating 
the ‘La Trobe Method’ in senior secondary mathematics classrooms. PEGS had recently 
built a senior secondary building that included rooms with entire walls made of 
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whiteboard material, so we developed a series of lessons that used the ‘La Trobe 
Method’ of whiteboarding and recorded our observations. The first series of lessons in 
2013 were limited in their structure and were designed simply to determine whether 
working at whiteboards, as opposed to working on similar problems in a traditional sit-
down, pen-and-paper lesson, made any difference to student learning. In the second 
series in 2014 we structured the whiteboarding lessons carefully to determine how 
‘flipping’ and the type of problems affected student learning. 
 Our observations over the two years suggest that whiteboarding does indeed make a 
significant beneficial difference to student learning and that those benefits are 
enhanced somewhat by paying close attention to the type of problems used in these 
lessons, by giving students additional instructional videos for homework, and by 
instructing students on how to collaborate. 

The benefits 
Deborah King, a student contemporary from our university days who went on to use 
whiteboarding in her own teaching at the University of Melbourne, suggests that the 
“simple activity”  

has a variety of benefits ranging from making friends to helping students to learn by 
explaining to others or learning from other students, exposing students to many ways of 
thinking about a problem. It developed a sense of identity within the group and with the 
tutor; we were all on a path together (Seaton, King & Sandison, 2014, p. 102). 

 Our school-based research project observations support King’s finding and suggest 
that, broadly speaking, there are five key benefits to whiteboarding:  

• whiteboarding makes student thinking visible 
• whiteboarding provides immediate and effective feedback 
• whiteboarding encourages mathematical discourse 
• whiteboarding develops mathematical resilience 
• whiteboarding demands participation 

Whiteboarding makes student thinking visible 
Perhaps the most striking benefit of whiteboarding is that every student’s thinking is 
made publicly visible. When thinking is made visible students benefit firstly by being 
able to collaborate and share ideas and secondly, and perhaps more powerfully, by 
reflecting on their own thinking and looking through a ‘window into the learning 
process itself’ (Ritchhart & Perkins, 2011, p. 272). This combination of social 
collaboration and private metacognition are the hallmarks of the now widely accepted 
sociocultural learning theories espoused by Piaget and Vygotsky (Bush & Kelly, 2004, 
p. 9). 
 Teachers also benefit from thinking that is visible by being able to assess, especially 
in a whiteboarding lesson, every student’s understanding quickly and effectively. 
Teachers are able to immediately “check student understanding, and to identify, 
confront, and resolve student misconceptions” (Wenning, 2005, p. 9) and 
inappropriate mathematical working. This cycle of early diagnosis and correction with 
students who need it is the foundation for effective feedback. 
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Figure 1. Year 11 students at Penleigh and Essendon Grammar School participating in a 
whiteboarding lesson. A lack of whiteboards is clearly not a problem;  

dry-erase markers work just as well on windows. 

Whiteboarding provides immediate and effective feedback 
It is probably safe to say that Black and Wiliam’s (1998) focus on formative assessment 
(Black & Wiliam, 1998), and Hattie’s (2013) finding that feedback is one of the most 
significant influences on student achievement (Hattie, 2013), have resulted in 
something of a paradigm shift in education. It is now widely understood and accepted 
that feedback is critically important for effective learning.  
 The visible, public nature of whiteboarding allows it to provide a mechanism for 
feedback not available in sit-down, pen-and-paper lessons. Not only can students in 
pairs give each other feedback, particularly if a Think Aloud Paired Problem Solving 
protocol is used (Flaherty, 1975; Lochhead & Whimbey, 1987; Van Someren, Barnard & 
Sandberg, 1994), but quick glances around the room allow students to learn from a 
wide variety of problem solving approaches. As Seaton, King and Sandison (2014) 
suggest, “it is amazing how many approaches to a problem you see . . . many you 
wouldn’t have thought of yourself!” (p. 104). More importantly, teachers can also 
quickly diagnose any individual or whole-class misconceptions at a glance and provide 
feedback in a variety of forms from small individual corrections in reasoning to whole-
class instruction of a significant concept. Even feedback to other teachers is possible: “if 
the whole class just didn’t get something, I could feed this back to the lecturer, a really 
important link in the feedback chain” (Seaton et al., 2014, p. 104). 
 The kind of feedback that whiteboarding facilitates is effective because it focuses not 
on the student, but on the task and the processes required to complete the task and 
because it is immediate (Hattie & Timperley, 2007).  

Whiteboarding encourages mathematical discourse 
Another striking benefit to whiteboarding is the extent to which students engage in 
mathematical discourse. In our observations, not only did students engage in dialogue 
with their partners, but also with other students around the room and with their 
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teachers. The discussions were not forced or manufactured but seemed to evolve 
organically from a shared desire to solve difficult, but interesting, problems. The 
discourse in the whiteboarding lessons contrasted intriguingly with sit-down pen-and-
paper lessons based on similar problems. The discourse in the sit-down lessons 
focussed partially on the problems and substantially on students’ social concerns, 
whereas the discourse in the whiteboarding lessons was demonstrably mathematical 
and focussed almost exclusively on the problems at hand. 
 The kind of discourse and interactions we observed suggested that the class was 
beginning to behave very much like the “community of mathematical inquiry” 
described by Goos (2004) where “students learn to speak and act mathematically by 
participating in mathematical discussion” (p. 259) in “a classroom that enables the 
practices, values, conventions and beliefs characteristic of the wider communities of 
mathematicians to be progressively enacted and gradually appropriated by students” 
(Goos, Galbraith & Renshaw, 2004, p. 36). 
 Our observations that whiteboarding encourages discourse were not made in 
isolation. Almost all discussions in the literature highlight the active and interactive 
nature of discourse in whiteboarding lessons (Bush & Kelly, 2004, p. 9; Henry, Henry & 
Riddoch, 2006; MacIsaac & Falconer, 2004; Seaton et al., 2014; Wenning, 2005, p. 5; 
Yost, 2003). 
 The discourse that students engage in during a whiteboarding lesson also has the 
added advantage of providing an insight into the world of professional mathematicians 
who often use blackboards themselves to visualise and experiment with their own 
thinking or to collaborate with colleagues, a practice best seen in films such as Good 
Will Hunting and A Beautiful Mind (Polster & Ross, 2012). Realising that they are 
working like real mathematicians brings an authenticity to the work that students are 
doing (Seaton et al., 2014, p. 111). 

 

Figure 2. Students at La Trobe University engaged in discussion in a typical board tutorial. 
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Whiteboarding develops mathematical resilience 
An observation that surprised teachers at PEGS was that when students solved 
problems in a whiteboarding lesson they seemed to be less dependent on teacher 
assistance and more inclined to persevere with problems. The students appeared far 
more resilient. The observation was surprising because the teachers used the same 
introduction and the same problems in a whiteboarding lesson as they did with a sit-
down, pen-and-paper lesson and yet the student approaches in the two lessons were 
distinctly different.  
 There are two suggested explanations for this observation. The first is that students 
who engage in mathematical discourse, as they invariably do in a whiteboarding lesson, 
tend to be more resilient problem solvers. Johnston-Wilder and Lee (2008), for 
example, believe that “articulating mathematical ideas contributes to building what we 
will call ‘mathematical resilience’” (p. 54).  
 The second is that students recognise that the thinking they are making so visible 
during a whiteboarding lesson is not permanent. Any error can easily be erased and a 
problem can be started from fresh. This recognition seems to give students the 
confidence to take risks and not worry about making errors. As Henry, Henry and 
Riddoch (2006) suggest, 

the ease of modification means that students may be willing to write or draw something 
that they are not quite sure of and expose it to group discussion and possible revision. 
Ideas are more easily exposed, discussed, accepted, discarded, and modified with the 
flexibility of a whiteboard (p. 1). 

 Henry, Henry and Riddoch (2006) were reflecting on the motivations of primary 
school children, but as Seaton, King and Sandison (2014) attest, the impermanence of 
whiteboarding even encourages the resilience of university students: “using 
blackboards (or whiteboards) invites the possibility for students to accept changes 
suggested either by their partners or by the tutor, fixing errors and false starts without 
the crossing out that comes when work is ‘corrected’ on paper, hence producing a 
polished final product” (Seaton et al., 2014, p. 104). 

Whiteboarding demands participation 
The public nature of whiteboarding means that students are compelled to be active 
participants in the lesson. In our observations no student, regardless of ability, was 
disengaged. Some students had difficulty but they got help from more able students 
who, in turn, consolidated their understanding by having to explain their thinking. 
Some students had little difficulty and others needed only to cast a glance around the 
room to get the tip or trick they need to proceed. The student’s engagement in the task 
seemed to reflect a shift in the management of the class. Rather than rely on the teacher 
to manage and motivate the class from the board, each student became publicly and 
visibly responsible for their own learning. As Seaton, King and Sandison (2014) 
suggest, “moving the responsibility of driving the class from the tutor to the students 
opens up opportunities for students to discuss mathematics and engage with the 
content in an environment that is non-threatening and inclusive. Everyone is 
compelled to be active in class” (p. 112). 
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The ideal whiteboarding lesson: Homework or no homework? 
By their very nature whiteboarding lessons are inverted or ‘flipped’ lessons because 
they allow teachers to “deliver targeted instruction to students one-on-one or in small 
groups, help those who struggle, and challenge those who have mastered the content” 
(Sams & Bergmann, 2013, p. 16) rather than rely on lectures or whole-class instruction. 
 Having established the benefits of whiteboarding in 2013 we set out in 2014 to 
determine whether whiteboarding lessons are improved by adopting a key component 
of flipping as defined by Bishop and Verleger (2013): “direct computer-based individual 
instruction outside the classroom” (p. 5).  
 We compared two classes with an identical set of problems. Class A was simply given 
the set of problems at the beginning of a lesson and asked to solve them using 
whiteboarding techniques. Class B was given some advance notice of the whiteboarding 
lesson and the goals of that lesson. The students in this class were also given some 
preparatory homework to do: watch a video we had prepared instructing them on the 
techniques for solving problems similar to those they would encounter in the 
whiteboarding lesson. 
 Interestingly, the only difference between the classes seemed to be that the students 
who watched the video arrived at their solutions more efficiently. Class A were 
eventually able to solve the problems successfully, but it took them a little longer to get 
there. It seemed that the only difference between the approaches was that Class B was 
easier to manage. 

The ideal whiteboarding lesson: Pairs or no pairs? 
Class B was also instructed to use the Think Aloud Paired Problem Solving (TAPPS) 
protocol. In this protocol one of a pair of students solves a problem while explaining 
their thinking out loud to the other student. The role of the other student is to act as a 
sounding board. The roles are then reversed for the next problem. 
 Class A, on the other hand, was given no instruction on how to collaborate. Some 
students in Class A began to solve the problems individually, some in groups and some 
in pairs. Eventually, however, students throughout the class began to collaborate in a 
unique and organic way. Individuals who were struggling to cope on their own began to 
discuss their difficulties with other individuals or initiated conversations with groups 
who seemed to be making progress.  
 Students in Class B, on the other hand, collaborated almost immediately, solved the 
problems more efficiently and were less reliant on teacher assistance. When they did 
engage the teacher in discussion it was more for clarification than for assistance in 
making a start in the problem solving process. 

The ideal whiteboarding lesson: Problem types 
We also compared the types of problems posed in 2013 and 2014 and analysed their 
merits. In 2013 we simply used problems that had previously been used for sit-down 
pen-and-paper lessons. Although the problems we used were not consistent across the 
classes that trialled the whiteboarding technique, some key common observations did 
emerge. It seemed that students lost motivation early in the lesson with problems that 
varied in difficulty but were essentially skills-practice problems. These sorts of 
problems also seemed to expose fewer misconceptions and encourage less interaction 
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between students and their peers and between students and teachers. A similar 
observation was made of problems that required approaches limited to one form of 
representation: algebraic, graphical or diagrammatic. Finally, we observed that the 
skills-practice problems were limited in their scope. Students found the homogeneity of 
the questions repetitive and tedious. In response to these observations we developed 
problems in 2014 that  

• exposed student misconceptions by creating cognitive dissonance, something that 
Mason (1999) suggests is the “fundamental experience that plays a crucial role in 
the construction, negotiation and reconstruction of meaning, both for individuals 
and for a social community” (p. 189); 

• required a multi-representational approach where students were compelled to 
use a combination of algebraic, graphical and diagrammatic techniques; 

• were differentiated from basic questions on fundamental concepts to complex 
questions requiring generalisations and proofs. 

By making these changes to the types of problems posed in whiteboarding lessons 
we noticed an increase in engagement, resilience and mathematical discourse. 
Interestingly, the creation of cognitive dissonance and subsequent exposure of 
misconceptions added to the quality and quantity of mathematical discourse and 
seemed to motivate students rather than disengage and frustrate them. 
 It should be pointed out, however, that these preliminary observations often raised 
more questions than they answered. This suggests that further trials across a variety of 
topic areas are required to add to our understanding of the complex role that problem 
types have in the effectiveness of any whiteboarding lesson. Suffice to say that we 
recognise that writing rich and meaningful tasks is difficult and complex in the 
development of any lesson, let alone one that involves whiteboarding. 

Coda 
The findings in this paper were presented as a workshop at the 51st Annual Conference 
of The Mathematical Association of Victoria in 2014. Knowing that the conference was 
being held at La Trobe University we immediately sought out our old tutorial rooms 
and were pleasantly surprised that they still existed and were still being used in much 
the same way they had been since their experiences of the early 1980s. Unknown to us, 
the ‘La Trobe method’ of running university tutorials had eventually made its way to 
the Universities of Melbourne, Wollongong and Newcastle where they became an 
integral part of teaching units in all year levels (Seaton et al., 2014, p. 102).  
 La Trobe University staff, intrigued that the La Trobe method was being used in 
secondary schools, attended our workshop. Subsequent discussions developed a 
partnership that resulted in this paper and one that holds promise not just for the 
promotion of whiteboarding as a teaching and learning tool, but also for meaningful 
links between secondary and tertiary mathematics teaching. 
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Two mathematics investigations for secondary school students are presented in this 
paper. The investigations are intended to nurture complex reasoning processes and 
ways of working that are appropriate for students of this age group. The design of 
each investigation is analysed in relation to the Dimensions of Learning 
pedagogical framework, as well as the SAMR and TPACK models for technology 
integration. The tasks involve the use of MATLAB, which is software commonly 
used in industry and tertiary institutions. The analysis illustrates, however, that 
this technology is very suitable for use in secondary school mathematics 
investigations. 

Introduction 
Two investigative tasks that were written for secondary school mathematics students 
are referred to in this paper. The first task is an investigation into codebreaking, and 
the second task is a mathematical modelling task involving shooting in basketball. Both 
tasks were written in alignment with the Dimensions of Learning pedagogical 
framework (Marzano, 1992), and designed to make use of MATLAB software (The 
MathWorks, 2014). The connections between the tasks and the Dimensions of Learning 
framework are outlined and the suitability of MATLAB software for use in secondary 
school mathematics is examined with reference to the SAMR (Puentedura, 2006) and 
TPACK (Niess, 2009) models for technology integration. 

Method 

Analysing the design of the investigations with reference to the 
Dimensions of Learning framework 
Both tasks are examined through the lens of the Dimensions of Learning framework. As 
illustrated in Figure 1, knowledge is central to the Dimensions of Learning framework.  
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Figure 1. The Dimensions of Learning Framework. 

 
 The knowledge is described in two forms, namely declarative (‘know what’) 
knowledge and procedural (‘know how’) knowledge. The importance of extending and 
refining knowledge, and using knowledge meaningfully are emphasised in the 
framework. The framework extends beyond the acquisition of knowledge, however. It 
also addresses affective aspects of learning, including the attitudes and perceptions of 
learners and their ways of working. The Dimensions of Learning form a suitable frame 
of reference, therefore, for an analysis of investigations that are intended for adolescent 
learners.   

Assessing the use of MATLAB with reference to the SAMR and TPACK 
models of technology integration 
The benefit of using MATLAB in the investigations is considered with reference to the 
SAMR and TPACK models of technology integration. The SAMR model has four levels 
which can be used to assess technology integration. The first level is ‘substitution’, and 
in this level the new technology replaces a form of technology that was used previously. 
The second level is ‘augmentation’. In this level the new technology is still essentially 
replacing the old method, but there are some added functionalities that enhance the 
learning process. The third level is ‘modification’. At this level the educational process 
is transformed, and the technology facilitates the redesign of the task. Finally, the 
fourth level is ‘redefinition’. In this level, new tasks can be designed that would not be 
possible without the new technology. 
 The TPACK model for technology integration provides a framework to describe an 
intricate blend of teacher knowledge. It spawned from a conceptual framework outlined 
by Mishra & Koehler (2006). The TPACK model describes a ‘total package’ of teacher 
knowledge which encompasses technological, pedagogical and content knowledge, and, 
importantly, the connections between these forms of knowledge. In their study of 
teachers in technology-rich environments, Goos and Bennison (2007) identified the 
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need for such a framework. This need arises from the fact that the teacher has to cope 
with increased levels of complexity when new forms of technology are introduced 
(Hoyles & Lagrange, 2010).  

Analysis 

Connections between the codebreaking investigation and the Dimensions 
of Learning framework 
One of the main objectives associated with Dimension One of the Dimensions of 
Learning framework is to help students develop positive attitudes and perceptions to 
classroom tasks. There are several methods that can be used to make tasks engaging for 
students. These methods include creating tasks that are relevant to life outside the 
classroom; ensuring that tasks provide an intellectual challenge; and stimulating 
interest in the task through the use of anecdotes related to the content of the task. 
 The codebreaking investigation is designed to adopt these methods. In the 
introduction to the investigation the relevance of codes throughout history and in many 
areas of real life is highlighted. Closely following the introduction, an intellectual 
challenge is presented to the students and they are asked if they can crack the code 
shown below 

sspaoitini oietundnom mtonleogoa eipodotsng 
tsloifhtei itenmtehcn mhteahtaae eehwgahtn 

 This codebreaking challenge is intended to initially arouse curiosity before it is 
solved using mathematical techniques later in the investigation. To raise interest levels 
further, a story is introduced in the form of a video clip from the movie “The Imitation 
Game” which is about codebreaking in World War II, and which contains a clue to 
cracking the code. 
 Dimension Five of the Dimensions of Learning framework outlines the productive 
mental habits of mind that help students become successful learners. Persistence is 
identified to be one of these habits of mind. Persistence is a quality that is associated 
with creative thinking. Codebreakers need to use their imagination and persevere. A 
link can therefore be drawn between this habit of mind and the codebreaking 
investigation.  
 The codebreaking investigation includes three main tasks. The first is to decipher a 
code which contains a quotation from Julius Caesar. The second task is to use the 
technique of frequency analysis to decipher a coded message. The third task is to crack 
a code that has been constructed using the transposition of letters. 
 The tasks are all associated with stories that are designed to arouse curiosity and 
interest. The way that Julius Caesar coded his correspondence is described by 
explaining his use of the so called ‘Caesar Shift’ in which he shifted each letter three 
places to the left in the alphabet. FRIENDS ROMANS COUNTRYMEN LEND ME 
YOUR EARS becomes COFBKAP OLJXKP ZLRKQOVJBK IBKA JB VLRO BXOP. 
 Frequency analysis is connected to the true story of the plot to assassinate Queen 
Elizabeth I. The contents of coded letters between Mary Queen of Scots and her 
followers were revealed using frequency analysis and Mary was subsequently beheaded 
in 1587. In the third task, the students use the technique of transposition to crack the 
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code that was set as a challenge in the introduction and which forms the last sentence 
spoken in the video clip from ‘The Imitation Game’, i.e. “Sometimes it is the people who 
no one imagines anything of who do the things that no one can imagine.” 

Using SAMR and TPACK to assess the use of MATLAB in the 
codebreaking investigation 
MATLAB is used in the codebreaking investigation in ways that can be related to the 
SAMR model. In the first task there is evidence of ‘augmentation’ when the Caesar Shift 
method is automated through the use of MATLAB. This is then transformed to the 
higher level of ‘modification’ when the task is redesigned to use ASCII code rather than 
just the letters of the alphabet. In the second task, there is evidence of ‘augmentation’ in 
that the frequency analysis can be performed faster and more efficiently using a 
MATLAB program than it could be done using pencil and paper. Arguably, the sheer 
power of MATLAB to deal with copious amounts of data increases the level to 
‘modification’ since the students are able to analyse thousands of words rapidly from a 
variety of sources or languages. The third task also show evidence of ‘augmentation’ 
when it provides an automated method of transposing text to form a code. There is 
scope for ‘modification’ since the students can use this method to create their own 
codes on a large scale. 
 The codebreaking investigation can be assessed from a teacher’s perspective using 
the TPACK model. In this investigation the technological demands on the teacher in 
terms of the use of MATLAB are not high. The use of MATLAB in the investigation can 
often be restricted to the use of single line commands including, for example, the 
commands ‘char’ and ‘double’. An example of this is given in Figure 2 below which 
shows a screenshot of the MATLAB desktop. 

 

Figure 2. The MATLAB desktop. 

Some program scripts are used but they are provided and the teacher only has to cope 
with adapting them in minor ways. The mathematical content knowledge is not overly 
sophisticated either and the only concept of note is the transposition of a matrix. 
Overall, the investigation is designed in such a way that it would not stretch too much 
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the technological, pedagogical and content knowledge of a secondary school 
mathematics teacher. 

Connections between the basketball shooting investigation and the 
Dimensions of Learning framework 
The basketball shooting investigation demands a level of declarative and procedural 
knowledge that is appropriate for senior secondary school students. The students are 
expected to know what the important features of a quadratic function are and know 
how these features can be used to construct a graphical model of the quadratic. 
Concepts and facts related to trigonometry and some elementary vector calculus are 
also required along with a reasonable degree of procedural skill in algebraic 
substitution and rearranging.  
 The basketball shooting investigation is also designed to be engaging. Although the 
context is very different from the codebreaking investigation, the methods used to 
make the investigation engaging are similar. The investigation is associated with life 
outside the classroom. It could even be introduced to the students in a basketball court. 
The investigation does present intellectual challenges in that it requires mathematical 
modelling and algebraic manipulation. The true story that the investigation is based on 
is perhaps the most engaging component of the design. In fact, the story is so powerful 
that the teacher can use it to help the students make connections with many features of 
the Dimensions of Learning framework. It is a tale of a young man at the end of high 
school who wishes to become a professional basketballer. He is not particularly tall but 
through a combination of dedicated practice and ingenuity he sets on a path to become 
the world’s greatest basketball shooter. 
 A teacher who uses this story to introduce the investigation can help the students see 
the connections between the investigation and productive habits of mind that form part 
of Dimension Five of the Dimensions of Learning framework. ‘Striving for accuracy’ 
and ‘restraining impulsivity’ are habits of mind that are associated with critical 
thinking. ‘Generating new ways of viewing a situation that are outside the boundaries of 
standard convention’ is associated with creative thinking. These habits of mind are all 
depicted in the true inspiring story in which the basketballer perfects his shot and 
ingeniously improves it using unconventional techniques. Introducing the investigation 
in this way makes it relevant to students’ interests and goals in a general sense. In the 
video clip that is incorporated in the investigation, the basketballer models self-efficacy 
when he writes on his shoes “I can do all things…” 

Using SAMR and TPACK to assess the use of MATLAB in the basketball 
shooting investigation 
With reference to the SAMR model, the use of MATLAB to perform curve fitting in the 
basketball shooting investigation can be viewed as a substitute for other methods. 
MATLAB performs the same operation that could be carried out on a spreadsheet or a 
graphics calculator. There is some evidence of augmentation in that the graph that is 
produced by MATLAB can easily be labelled and annotated. This can be done 
interactively using drop-down menus. Alternatively this can be performed through the 
creation of a script which could be adapted and reused in other contexts. The use of 
MATLAB to animate the basketball shots provides some evidence of modification. The 
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visualisation of the shot is transformed from 2 dimensions to 3 dimensions. This helps 
the students make a connection between the mathematical model and the real world 
activity of shooting a basketball. 
 From the teacher’s perspective the technological skills required to perform the 
curve-fitting and the three-dimensional animation are very manageable. This is 
because the curve-fitting can be carried out by entering coordinates into row matrices 
using single line commands followed by selections from an interactive drop-down 
menu. The program that is required for the three-dimensional animation is provided 
and only needs to be adapted by inserting a quadratic expression in a syntax similar to 
that used in a spreadsheet formula.  

Conclusion 
The mathematical investigations referred to in this paper have been analysed with 
reference to the Dimensions of Learning framework and shown to be suitable for 
secondary school mathematics students. The tasks have also been examined in relation 
to the SAMR and TPACK models for technology integration. This examination has 
shown that the tasks have been enhanced and transformed by the use of MATLAB 
without placing any great demands on the technological, pedagogical and content 
knowledge of secondary school mathematics teachers. From all of this it can be 
concluded that MATLAB can be used effectively in secondary school mathematics 
investigations. 
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During Semester 2 2014, I taught a basic mathematics course to a group of Year 11 
Indigenous students in a large remote Kimberley school. I will show how I 
attempted to take students from basic concrete spatial knowledge to the use of 
scale factors and similar triangles. The presentation highlights the importance of 
both starting from the students' current knowledge base and adjusting the teaching 
style to accommodate the learning strengths of Indigenous students. It is possible 
to rapidly move high-attending students from manipulating physical materials to 
the meaningful use of abstract representations and calculations in a 'high 
expectations' environment. 

Introduction 
Over many years much funding and effort has been directed towards ‘closing the gap’ 
between the literacy and numeracy achievement of Indigenous and non-Indigenous 
Australian students (Australian Government Department of Education and Training, 
1989; Council of Australian Governments, 2009) with little evidence of success.  

Between 2008 and 2014, the proportion of Aboriginal and Torres Strait Islander students 
at or above the National Minimum Standards in reading and numeracy has shown no 
statistically significant improvement nationally (Australian Government Department of 
the Prime Minister and Cabinet, 2015, p. 14). 

 Although ‘numeracy’ has typically been included in reform agendas (MCEECDYA, 
2010), the emphasis has mainly been on literacy improvement when reforms have been 
implemented. It is only relatively recently that a direct focus on improving mathematics 
for Indigenous learners (rather than the more nebulous ‘numeracy’) has been explicitly 
fostered (Grootenboer et al., 2009; Morris & Matthews, 2011). 
 Diagnostic assessment of mathematics understanding of Year 11 students at the 
school in 2014 revealed that they had learned very little mathematics beyond basic 
whole number during their previous ten years of schooling. This was in spite of the 
school’s engagement in national and state government literacy and numeracy reform 
programs over many years. Low attendance rates could explain some students’ low 
performance. The high-attending students, however, also exhibited extensive 
misconceptions, and mathematical knowledge and skills at least three years behind 
their current year level. The reasons for the continuing low performance of Indigenous 
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students in mathematics are complex and partially involve aspects of culture, history 
and politics (Jorgensen & Sullivan, 2010) which I will not be considering in this 
presentation. Rather I will focus specifically on the role of curriculum and pedagogy in 
facilitating and accelerating the mathematics learning of the group of Year 11 students I 
had the opportunity to teach in the latter months of 2014. 

Indigenous learners of mathematics: What do we know? 
A four year project that supported schools across Australia to improve mathematics 
education for Indigenous students, Make it count: Numeracy, mathematics and 
Indigenous learners, was conducted by the Australian Association of Mathematics 
Teachers (AAMT) and culminated in an AAMT special interest conference in 2012.   
 The conference summary listed a number of pedagogical practices that could favour 
Indigenous learners and build on their strengths. The practices that particularly 
influenced my thinking and informed my planning include: 

• making the learning goals—for the lesson, for the unit of learning etc.—
intentional, explicit and understood by the students; 

• giving clear and well-known processes for scaffolding students’ learning in 
mathematics; 

• students watching as teachers (or others) model the mathematics i.e. doing the 
mathematics, articulating it, applying it; and 

• students interacting with mathematics through ‘body–hand–mind’.  
(Australian Association of Mathematics Teachers, 2012, p. 10)  

Learning the mathematics 
The stage one unit I was required to teach consisted of relatively low level content that 
would normally be introduced at around years 6 or 7. Even so, it was clear from 
previous assessments that the Year 11 students had achieved very little of the pre-
requisite knowledge assumed in the unit description. The starting point for building the 
students’ understanding therefore needed to be a lot lower than the knowledge and 
understanding required to directly access the unit’s content. Conversely, the expected 
degree of mathematical complexity did not seem sufficient to match the normal 
developmental maturity of Year 11 students. Consequently, students who had missed 
large chunks of mathematical content (for whatever reason) had little chance of 
catching up if teachers restricted their planning to the limits of the unit content.  
 My approach was to implement pedagogical practices that favoured Indigenous 
students, while attempting to rapidly accelerate the students’ understanding of 
concepts listed in the unit. If possible I intended to extend the complexity of the 
mathematics beyond that described in the unit. 

The content and sequence of learning 
The mathematics unit students were studying required that they were able to: 

•  measure, draw and estimate angles in degrees;  
• classify angles as acute, right, obtuse, straight and reflex;  
• name polygons including types of triangles and quadrilaterals; and 
• draw polygons that meet criteria for angles, sides and vertices. 
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Triangles and angles 
Previous testing had shown that students had little geometric knowledge, other than to 
name simple figures such as a triangle, a circle, a rectangle or a square. They thought 
‘angle’ had something to do with corners but they had no knowledge of or skill in the 
measurement or classification of angles or the properties of polygons.  

Exploring and categorising triangles 

Student were given straws and wool (with a pipe cleaner ‘needle’) and asked to make 
different polygons, cutting the straws to provide a variety of different length sides for 
their shapes. During this process students discovered that no matter what the length of 
the sides, triangles were always rigid, while other polygons were flexible. This enabled 
me to draw attention to angles by asking the question, “So what changes when you 
change the shape of a quadrilateral?” Students completed the recording sheet shown in 
Figure 1 to reinforce the terminology. The action of physically making the polygons 
with straws interested students and even previously reluctant students attempted the 
recording sheet. 

 

Figure 1. Recording sheet used by students when creating different polygons with straws and 
wool yarn. This student usually refused to complete any written mathematical task. 

 By the end of this first lesson students understood that what makes triangles 
‘special’ polygons is that the relative lengths of the sides of a triangle constrain the 
shape of its corners.15 Talking with individual students and the class reinforced my 
perception that the students did not understand the geometric meaning of an ‘angle’ 
and had no knowledge of the way in which angles are measured mathematically. While 
they could make a square by manipulating straw sides of equal length, no one could tell 
me that the resulting corners were called ‘right angles’ or that they measured 90°. Some 
of the boys were familiar with the meaning of “I did a one-eighty,” or “I did a three 
sixty,” in relation to doing ‘wheelies’ when riding their bikes, but they did not know 
where those numbers came from or that they had a mathematical meaning. 
 During the next lesson, students used the straws and wool to construct a range of 
triangles, guided by a sheet illustrating standard categories of triangles and the angles 
they contain. Students worked together in pairs or triads to produce posters showing 
the different triangle types and their properties (Figure 2), necessitating the use of the 
target language in context. While some students made posters with the straws and 

15 Further lessons explored the properties of other polygons including tessellations and perimeter/area activities, but 
this paper only focuses on developing understanding of angles and triangles. 
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wool, one student wanted to make his poster from paper triangles he had drawn and 
cut out. Figure 3 shows the result of his efforts. 

 

Figure 2. Students cut up straws and threaded them through with wool yarn to explore the 
lengths of sides and angles required to model the different categories of triangles.  

 

Figure 3. A student’s poster with annotated cut-out examples of the triangle types. 

Explicit input 

The sheet provided clear examples of triangle and angle types and the terminology that 
described them. In addition students were told that a ‘right angle’ matched the shape of 
the corners of their sheet of paper, the desk and the room, and also that it matched a 
quarter turn and measured 90°. I invited students to stand up and physically turn to 
match a 90° turn (quarter turn), and also 180° (half turn) and 360° (full turn, using 
four quarter turns), linking the language to bike riding slang.  
 The physical activity of creating the straw triangles taught students some of the 
properties of triangles and their angles. For example, they discovered that they could 
not make a triangle with two right angles, or with two corners greater than a right 
angle, and that if one corner was equal to or greater than a right angle (obtuse angle), 
the other two corners had to be less than right angles (acute angles). Physical actions 
were linked to the formal and informal language that describes angles and triangles. 
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Measuring angles 

Students now knew a right angle measured 90°, but did not know why. To begin to 
establish this understanding, students were given two different coloured card circles, 
slit to the centre, intertwined and then rotated to illustrate the continuity of angles 
from zero through to a full circle. Figure 4 shows how the two circles are put together 
and rotated, one against the other to reveal angles in the coloured card.16 Students were 
able to see how creating an acute or an obtuse angle with one colour created a reflex 
angle with the other colour, and how a straight line could still be considered an angle. 

 Figure 4. Creating circles to illustrate the turning actions and the relative size of angles. 

 The use of the circles led to the introduction of the units of angle measurement that 
are created around the ‘turn’ of the circle up to 360°. The use of a protractor as the 
implement or ‘ruler’ for measuring angle was introduced with the help of animated 
PowerPoint slides that I created for this purpose (Figure 5). 

         

Figure 5. Slides that were animated to show the use of a protractor to draw an angle. The 
instruments physically move to demonstrate the exact actions involved. 

 After reshowing the animated sequence several times, students were confident 
enough to use a protractor to measure and then draw some of the different angles they 
were able to create with their intertwining circles. With a little more practice most 
students could successfully draw, measure and categorise angles without assistance.  

Angles within triangles 

At this point I returned to the exploration of triangles and their properties. Figure 6 
shows an activity during which students established for themselves that the corners of 
any triangle sum to a straight angle, or 180°.  

16 This activity was originally devised by Pamela Sherrard, WA Department of Education. 

1)  Cut out two card circles with 
slits to the centres. 

2)  Line up the slits and slide the two circles together.  
   Now the circles can be rotated to create the full range of angles. 
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Figure 6. Students cut out different shaped triangles, drew around them, then tore off the 
corners and combined them to prove the angles of a triangle add up to a straight angle.  

 This and other angle and triangle information was reinforced and memorised by 
light-hearted incidental activities. For example, “Each of you must answer a question 
before you get to go out to recess.” “What do the angles of a triangle add up to?” “What 
is the size of the angles in an equilateral triangle?” “If two angles add up to 100°, what 
must the third angle be?” “What can you tell me about an Isosceles triangle?”  
 It was important that memorisation of the standard angle measurements and 
triangle types was only expected after students had developed an understanding of the 
concepts through scaffolded physical manipulation of materials and the development of 
strong mental images of the categories of angles and triangles. Figure 7 shows the kind 
of pen and paper assessment items that students could then complete with ease.     

 

Figure 7. Example of assessment items. This work sample reveals the growing confidence of one 
student who usually avoided tests—she triumphantly wrote ‘no help!!’ next to each of the items. 

Transformations and enlargements 
Another content requirement of this unit included the introduction of transformations. 
I use animated slides to illustrate translation as the movement of points in a figure a 
fixed distance along parallel lines running through the points. Students found the 
scaffolded visual sequence easy to follow so I also created similar animated 
demonstrations for reflection and rotation. I then decided to extend the technique to 
create enlargements using rays and scale factors (see Figure 8). 
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Figure 8. Animated slides stepping students through enlargement using rays and scale factors. 

Students found the animations easy to follow. They were able to observe and then 
attempt to mimic the procedure shown in the animations (Figure 9). They could also 
view the steps over and over, and saw exactly what was expected of them. 

  

Figure 9. On the left is one student’s enlargement after seeing the slide show, and on the right 
another student’s enlargement of a triangle using scale factors of 3, then 6, and then 12. 

The student’s construction of the similar triangles using scale factors led me to believe 
that the students were capable of going well beyond the rather simple applications 
suggested in the unit content. Using animated slides to support their learning I 
introduced the idea that scale factors and proportional reasoning can be used to 
calculate unknown heights, and that the properties of similar triangles enables this. 

Using similar triangles to calculate unknown heights 
During the enlargement activity students explored how the scale relationship held true 
for every length within the enlarged figure. Students measured and used their 
calculators to prove this was true. I used animated slides to demonstrate how this 
knowledge could be used to calculate the unknown height of a building (Figure 10).  
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Figure 10. Slides from the animated sequence showing how an unknown height is calculated.  

 Students then drew their own tall object on a worksheet which was set up to scale 
with a baseline and a person measuring 2 metres tall. Students were asked to take the 
measurements on their page at ‘ground level’ in centimetres and use what they knew to 
work out the height of their building (or tree if they chose to draw a tree). I had not yet 
talked about the similar right triangles that were created in the diagram. Students did 
not, therefore, realise the necessity to keep their building or tree parallel to the ‘person’. 
The work sample shown in Figure 11 reveals the effect of this. The student had 
measured the appropriate lengths to obtain an accurate scale factor, but because he had 
sloped his building, the actual height did not match his calculated height.  

 

Figure 11. This student calculated a height of 11.4 cm, but his sloping building measured 13.5 cm. 
The problem was solved when the extra line drawn at right angles did measure 11.4 cm. 

 It was time to become more explicit about the role of similar triangles in making 
sense of why this process works. The animations in the next slides drew attention to the 
similar triangles in the diagram and the resulting relationships, as shown in Figure 12. 

 

Figure 12. Slides from animations introducing similar triangles, standard labelling of vertices 
and symbolic representation of the calculations.  
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 At this point students were ready for a practical application of the method. We 
decided to measure the goal post at one end of the oval. We first measured the height of 
a student who volunteered to be the vertical side of the small triangle. We then used a 
long skipping rope and our eyes to line up the top of the goal post with the top of the 
student’s head and a point on the ground behind the student. Students then measured 
the required ground level distances with a trundle wheel. We recorded the 
measurements, and then students drew a diagram and calculated the height of the goal 
post. Figure 13 shows one student’s diagram and calculations using abstract symbols. 
The important point about this diagram and the student’s calculations is that he 
understood every part of his representation and the meaning of the symbols he used.  

 

Figure 13. One student’s representation of the measuring activity carried out on the oval to 
determine the height of the goal post, showing his calculations using abstract symbols. 

Further activities and animated slides consolidated students’ understanding and 
ensured that they could vary their diagrams of the triangles to suit different problems. 
A range of easily understood situations were presented to give students the opportunity 
to show that they could generalise the relationships between similar triangles in 
different contexts and had not just ‘rote-learned’ the procedure.  

Reflections 
The outcome of this sequence of lessons was extremely satisfying for me, the teacher, as 
well as for the students. They were very proud of the fact that they had used and 
understood some relatively advanced mathematics involving proportional reasoning. I 
believe that the successful acceleration of the students’ learning can primarily be 
attributed to the students’ exposure to explicit visual representations of the key 
mathematical concepts in a safe ‘high expectations’ learning environment.  
 At each stage students understood exactly what was expected of them and had 
opportunity to interact with the mathematics through ‘body–hand–mind’. They were 
able to watch the modelling of the mathematical concepts and skills through the 
animated PowerPoint slides, which could be replayed until they were satisfied that they 
understood what was expected. The initial hands-on activities engaged all students by 
incorporating choices and opportunity to explore. Mathematical terminology and 
concepts were represented physically, diagrammatically, orally, and using symbols.  
 It seems that Indigenous students are particularly powerful visual learners. The 
challenge is to make the mathematics they see as explicit and meaningful as is possible. 
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The aim of this workshop is to introduce a probability-based statistical 
investigation that can be carried out using the features of the software TinkerPlots. 
We will answer the question asked by Cliff Konold in 1994: Will changing China’s 
one-child policy to a one-son policy cause a population explosion and/or result in 
an oversupply of girls? Following the four stages of a statistical investigation (pose 
question, collect data, analyse data, make decision) the process illustrates the five 
Big Ideas that form the conceptual foundation for statistics at the school level. The 
activity also illustrates some of the many learning affordances of TinkerPlots. 

Introduction 
An historic problem introduced by Konold (1994) is revisited for three reasons. Firstly 
it provides a still-current meaningful context within which to carry out a statistical 
investigation. Secondly it illustrates not only the four stages in carrying out an 
investigation but also the five Big Ideas that are the foundation for the study of 
statistics at school. Thirdly it employs the software TinkerPlots, developed by Konold 
and Miller (2005; 2011) more than a decade later to make large-scale interactive 
simulations possible in a hands-on fashion. This facility is one of the major affordances 
of the software for learning. 

The one-son problem 
The pure mathematics involved in this problem is from probability theory and can be 
stated and solved with a binomial model in a way leading to the sum of an infinite 
series. Adding a context, as Rao (1975) claimed is essential for any application of 
statistics, provides a meeting place for probability and statistics in the school 
curriculum. Later in the curriculum, probability provides the basis for the level of 
confidence one has in making an inference in statistics. Here it provides the link from a 
genuine context for a model that answers a problem in that context. 
 The Chinese government’s one-child policy is well-known and was implemented to 
reduce a burgeoning population that was 1.1 billion when Kristof (1990) wrote about it. 
At that time Kristof reported that many couples were happy to accept the policy as it 
enhanced their economic prospects. This would have been more likely to be the case if 
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the first child had been a boy. As well, however, there was a view of rural peasants that 
the policy should not be implemented until the first son was born. This would have 
amounted to a one-son policy. One of the consequences of the one-child policy in recent 
years has been an over-supply of men who now are often having difficulties finding 
wives (e.g., Brooks, 2013). China’s attempt to alleviate this and other difficulties 
resulted in a policy change in 2013 to allow a couple to have two children if one of the 
parents is an only child (Burkitt, 2014). 
 Changing from a one-child policy to a one-son policy leads to the hypotheses that 
there may be a population explosion and that the balance of boys and girls would 
change to favour girls rather than boys. Konold (1994) expressed these hypotheses as 
questions based on the mathematics involved: 
 1. What would the average number of children be in a family? 
 2. What would be the ratio of births of girls to births of boys? (p. 232) 
To address the problem with a probability model requires the assumption that the 
gender of a baby is a random phenomenon and that only single births are considered. 
This is the type of assumption that is made when students use two coins to model the 
likelihood of having two boys, two girls, or one of each in a two-child family. The 
situation here is that a single coin would be tossed until the side assigned to boy 
occurred. The number of tosses to reach a boy would be recorded as the number of 
children in the family. 

The statistical investigation 
Rao (1975) would now be happy that there is a context for a statistical investigation to 
take place. The four steps of an investigation advocated by the GAISE report of the 
American Statistical Association (Franklin et al., 2007) are the basis for the 
investigation, as shown in Figure 1. 
 

GAISE Framework 
I. Formulate Questions 
→ clarify the problem at hand 
→ formulate one (or more) questions that can be answered with data 
→ anticipate variability 
II. Collect Data 
→ design a plan to collect appropriate data 
→ employ the plan to collect the data 
→ designing for variability 
III. Analyse Data 
→ select appropriate graphical and numerical methods 
→ use these methods to analyze the data 
→ accounting for variability in distributions 
IV. Interpret Results 
→ interpret the analysis 
→ relate the interpretation to the original question 
→ allowing for variability beyond the data 

Figure 1. The GAISE Framework of the statistical investigative process  
(Franklin et al., 2007, p. 15–16). 



WATSON 

147 

1. Formulate questions 
This has been done, with a model that anticipates the variability inherent in the 
random birth of a boy or girl for each addition to the family and the consequent 
variability in family size. 

2. Collect data 
The design to collect data uses the Sampler in TinkerPlots to simulate births based on 

the binomial model with p = 
 
1
2

. The pseudo-random design of the Sampler provides the 

variation required for answering each of the questions. Figure 2 shows the Sampler set 
up with labels “B” and “G” in the Mixer (deleting other values), with Draw set at 1, and 
with the Attribute labelled “Child”. The Replacement Option should be set at “With 
Replacement”; this can be checked using the small arrow below the Mixer, as shown in 
Figure 3.  

  

Figure 2. Setting up the Mixer in the 
Sampler.  

Figure 3. Making sure “B” and “G” are replaced after 
each “birth”. 

 Under Sampler Options in the Options menu (upper right corner of the Sampler), 
the “Repeat Until Condition” is chosen and Child = “B” is inserted in the box below, as 
seen in Figure 4. Then Run is clicked once to produce a Result as seen on the right of 
the figure. [The first family has two children with the boy born second.] 

 

Figure 4. Setting the condition to draw from the Mixer until a “B” is drawn and recording each 
draw in the Results of Sampler 1 Table. 

 To keep track of the families and their sizes, first a Plot is dragged down for the 
Results of Sampler 1 Table. This displays the number of icons reflecting the number of 
births to get a boy. Clicking on N for the Plot (in the tool bar along the top of the 
window) shows the family size and clicking on Child in the Results of Sampler 1 Table 
colours the icons by gender (see Figure 5). To keep track of repeated families simulated, 
the History tool is used from the menu below the Plot. When it is clicked a grey box 
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appears around the number displayed. Double clicking on the box creates a History of 
Results of Sampler 1 Table recording the count from the Plot (see Figure 6). 

  

Figure 5. The plot of the first 
family with N counting the 

number of children. 

Figure 6. Setting up History to count the children in 
repeated families. 

 The Collect field in the History of Results of Sampler 1 Table can be changed to 
conduct more than one trial (creating more families) at one time. This is shown in 
Figure 7 to complete a total of 200 families and Figure 8 shows the number of children 
in the final families simulated. The data are now collected! 

 
 

Figure 7. Setting the Sampler to collect 199 more 
samples. 

Figure 8. The record of the 200 samples 
(sizes of families). 

3. Analyse data 
There are several ways to account for the variability in the data. To see how many 
families in the sample of 200 have each number of children, a Plot is used, dragging the 
count_ attribute from the History of Results of Sampler 1 to the horizontal axis of the 
Plot. The data appear in two bins as seen in Figure 9, and dragging an icon to the right 
until each value is in a separate bin and clicking on the N tool shows how many families 
are in each bin as in Figure 10. The binomial distribution would predict a reduction of 
half in each bin to the right but there is variation resulting from the simulation process. 
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Figure 9. Plot showing count_ data in two 
bins. 

Figure 10. Plot with data separated into 
individual family-sized bins. 

 
 To find the average family size and the ratio of boys to girls, an icon is dragged to the 
right until the data are fully separated on the axis and the Average option is chosen 
from the tool bar (along the top of the window) as well as “Show Numerical Value”. As 
seen in Figure 11, the average family size is very close to two and because every family 
has exactly one boy the average number of girls is 1.01 and the ratio of boys to girls is 
very close to 1:1. 

 

Figure 11. Plot with separated data showing the mean family size. 

4. Interpret results 
In the context of the problem (China’s one-child policy) a change from a strict one-child 
to a strict one-son policy would double the number of births but there would not be a 
population explosion and the balance of boys and girls would return. Another, 
simulation of 200 families, would produce a slightly different distribution and value for 
the mean as seen in Figure 12. The confidence in the result is high but it would be 
possible to do 10 000 trials for an even greater degree of confidence. 
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Figure 12. Another sample of 200 simulated families. 

Five big ideas 
The five big ideas for Statistics from the AAMT Top Drawer Teachers site 
(http://topdrawer.aamt.edu.au/Statistics/Big-ideas) are shown in Figure 13: Variation, 
Expectation, Distribution, Randomness and Informal Inference. They are described in 
detail on the Top Drawer site but Figure 13 is amplified to show how the one-son 
problem illustrates each of them. As demonstrated in the GAISE framework (Figure 1), 
variation is the cornerstone of every statistical investigation. Without variation there 
would be no statistics (Moore, 1990). Expectation arises from the question being 
investigated and the purpose of the investigation is to confirm it or otherwise. Here, 
two expectations were being explored within the variation of the data collected, related 
to family size and the balance of boys and girls. Distribution is the lens through which 
expectations are confirmed, here plotting the data to display the variation and find the 
average, and hence the ratio of boys to girls. Randomness provided the simulation of 
the births of boys and girls (draws from the Mixer) and hence the family sizes. 
Randomness and distribution provide the evidence to support the informal inference 
that answers the questions, in this problem with a high degree of confidence. 

 

Figure 13. The big ideas of statistics underpinning the one-son problem. 
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Affordances of TinkerPlots 
Much of the literature on the benefits of software applications in mathematics and 
statistics focuses on what the software can do and certainly as shown in this paper, 
there are many exciting and powerful things that TinkerPlots can do. Watson and 
Fitzallen (in press), however, review the affordances of TinkerPlots for learning. 
Among these affordances is the ability to analyse distributions in different and creative 
ways. Figure 14 shows the same data set displayed in bins and with a divider. Rubin 
and Hammerman (2006) found that the top configuration allowed teachers to discuss 
particular sections of the data and be aware of what their students would do. Using the 
bottom separated plot with a divider helped consider whole distributions and compare 
them meaningfully. 

 

Figure 14. Using bins and a divider to analyse data in TinkerPlots. 

 Figure 15 uses the Ruler tool demonstrating that the sum of distances from data 
values to their mean is zero (Hudson, 2012). This is seen by imagining to balance the 
values on either side of six. Hudson also used the Drag Value Tool to move a data value 
to show the effect on the value of the mean. 

 

Figure 15. Using the Ruler to demonstrate the properties of the mean in TinkerPlots. 

 For the one-son problem not only are there several affordances related to visualising 
the process of creating the model for the simulation, but also another affordance is the 
ability to set up the Plot for the count_ attribute and the mean at the beginning of the 
collection of the 200 (or more) samples. Using the History tool again, on the Plot of 
History of Results for Sampler 1, allows for the mean of count_ to be calculated as 
each trial is added. Using the Formula option to define a new attribute case with the 
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Special Function caseIndex, it is then possible to plot the History of the mean as it 
approaches 2. This is seen for the end of another set of 200 trials in Figure 16. This 
enables students to watch the distribution of family sizes grow and the mean change 
over time and approach 2.0. Students not only enjoy this (and squeal when a large 
family occurs) but also observe how a distribution actually grows and changes as the 
samples accumulate. This is an important learning benefit of the software. 

 

Figure 16. The final plots for an animation of the one-son simulation. 

Conclusion 
Without computers and software it is of course possible to simulate the one-son 
problem in the classroom. Each student is given a coin to toss (with Head for boy) and 
counts the number of tosses until a boy occurs. The teacher (or another student) is at 
the whiteboard with an axis drawn recording the number of children in families as they 
are shouted out by the students. This can be quite exciting when a very large family 
occurs. As described here using TinkerPlots this activity has been used as part of an 
extended unit for Year 10 leading to resampling (Watson, 2014) and as part of 
professional learning in the Reframing Mathematical Futures II project (Siemon, 
2014). 
 Konold (1994) based his analysis of the one-son problem on an earlier probability 
simulation software before TinkerPlots, which could not keep track of repeated samples 
as the History tool does in TinkerPlots. This feature of the recent software (Konold & 
Miller, 2011) is an affordance for both doing statistics and learning how repeated 
sampling works to help reach decisions. One-son is a wonderful real-world problem, 
linking probability and statistics, illustrating the Big Ideas underpinning statistical 
investigations, and exhibiting the learning affordances of TinkerPlots. Thank you Cliff 
Konold! 
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One of the foci of the Reframing Mathematical Futures II project (RMF2) is the 
development of statistical reasoning. The aim is to develop and trial rich tasks of an 
intermediate length at the middle school level that will assist teachers to make 
formative judgements on students’ progress. Recognising the importance of all 
stages of a statistical investigation, as well as the big ideas underlying them, 
suggestions are made for an innovative approach asking students to reason 
statistically and provide arguments in support of their responses. 

Introduction 
Among the aims of the Reframing Mathematical Futures II project (RMF2, Siemon, 
2014) is the development of classroom assessment tools that can be used to identify 
student learning needs in relation to statistical reasoning in Years 7 to 10. Although 
acknowledging the existence of items for surveys completed in testing contexts, and 
suggestions for extended statistical investigations where student progress is followed 
through written responses in workbooks, the approach taken in this paper is to suggest 
a middle ground incorporating a flexibility that hopefully can be adapted for classroom 
needs. These could then be incorporated in task-based professional learning modules 
aimed at deepening teachers’ understanding. The ultimate aim is to provide rubrics for 
the multi-step tasks that allow the placement of responses on a hierarchical learning 
trajectory that can assist teachers in providing activities to move students to higher 
levels. 
 In this paper two multi-part tasks are presented with rubrics that have been trialled 
with students and levels of response are suggested in relation to previous research of 
the authors (Callingham & Watson, 2005; Watson & Callingham, 2003). As well, four 
new items are suggested for consideration by teachers and trialling in high school (Year 
7 to Year 10) classrooms. 

Statistical background 
To ensure that tasks cover the concepts underlying statistical investigations and the 
steps involved in a complete statistical investigation, we first introduce five big ideas of 
statistics. These ideas are those that students in school need to develop. These ideas can 
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be developed through conducting complete statistical investigations, and the steps in 
an investigation are described.  
 In the AAMT’s Top Drawer Teachers website (http://topdrawer.aamt.edu.au), each 
drawer provides the big ideas that underpin the mathematics covered. These are the 
concepts that provide the foundation for the presentation of descriptions and activities 
associated with Misunderstandings, Good Teaching, and Assessment. For the Statistics 
drawer, there were five big ideas, as reproduced in Figure 1. Details from Top Drawer 
Teachers are presented in Appendix 1. As seen in the centre of the figure these ideas are 
intended to be the basis of classroom statistics. Planning of classroom activities, 
however, does not systematically trace a pathway around the corners of the pentagon in 
the figure because, as indicated, they are all interrelated. Classroom activities using the 
big ideas illustrate the practice of statistics, which is a step by step procedure for 
finding a decision for a statistical question posed in a context. 

 

Figure 1. Interrelated big ideas underlying statistics (Top Drawer Teachers: 
http://topdrawer.aamt.edu.au/Statistics/Big-ideas). 

 Several models have been suggested for carrying out a statistical investigation. The 
PPDAC model of Wild and Pfannkuch (1999) has five steps: Problem, Plan, Data, 
Analysis, and Conclusion, with the possibility of cycling through the steps repeatedly. 
Watson (2009), building on the work of Holmes (1980), suggested a visual model for 
students including the importance of context for the statistical question posed and 
explicit links to variation for every ordered step: collect data, represent data, reduce 
data, level of certainty, informal inference. The Australian Curriculum: Mathematics 
(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2013) does not 
offer a specific step by step model for carrying out a statistical investigation. The US 
GAISE report (Franklin et al., 2007) is explicit in suggesting a four-stage model that 
reflects the work of Friel and Bright (1998) that can be represented as a poster in the 
classroom as shown in Figure 2. 
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Figure 2. Four steps to making decisions with data. 

 It is important to appreciate the relationship of the big ideas to the stages of an 
investigation. Variation and expectation underpin all stages of a statistical 
investigation. If it were not for variation, questions would not be worth posing, but 
equally a question is sensible only if there is an expectation of some answer/s existing 
in the variation. A hypothesis or question is a way of expressing an expectation to be 
tested. Data collection is planned to allow for both variation and expectation and can at 
times be very complex. The big idea of randomness underlies the highest quality of data 
collection and influences the confidence with which a decision can be made at the end 
of the investigation. The purpose of analysing data is then to find or isolate the 
expectation within the variation. Here is where the big idea of distribution comes to the 
fore, as it provides a method of organising the variation in a way that others can 
understand the message in the data, and the evidence to support (or otherwise) the 
existence of the expectation. Distributions are usually displayed in some graphical form 
but they may also appear as tables, perhaps showing the association of two categorical 
variables. The purpose of a statistical investigation is to make a decision in relation to 
the expectation expressed in the question posed. At the school level the decision is 
likely to be an informal inference, recognising that at higher levels theoretical models 
allow the decisions to be formal inferences. All inferences, however, have some level of 
confidence related to the decision being made. The methods of data collection and 
analysis contribute to the confidence in the decision and evidence from these stages of 
the investigation are presented in support of the decision. 
 Based on the components of these big ideas for understanding statistics the 
framework for statistical investigations, the authors suggested a statistical literacy 
hierarchy (Callingham & Watson, 2005; Watson & Callingham, 2003) that can form the 
starting point for a proposed learning trajectory for statistics in the RMF2 project. A 
qualitative description of the six levels of the construct is given in Table 1. This 
hierarchy is used to map the suggested levels associated with the rubrics given for the 
tasks to follow, and to define the standard of the learning outcomes in statistics for 
students. 
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Table 1. Statistical literacy (SL) hierarchy (Watson & Callingham, 2003, p. 14). 

Level Brief characterisation of step levels of tasks 

6. Critical 
Mathematical 

Task-steps at this level demand critical, questioning engagement with context, 
using proportional reasoning particularly in media or chance contexts, 
showing appreciation of the need for uncertainty in making predictions, and 
interpreting subtle aspects of language. 

5. Critical Task-steps require critical, questioning engagement in familiar and unfamiliar 
contexts that do not involve proportional reasoning, but which do involve 
appropriate use of terminology, qualitative interpretation of chance, and 
appreciation of variation. 

4. Consistent 
Non-critical 

Task-steps require appropriate but non-critical engagement with context, 
multiple aspects of terminology usage, appreciation of variation in chance 
settings only, and statistical skills associated with the mean, simple 
probabilities, and graph characteristics. 

3. Inconsistent Task-steps at this level, often in supportive formats, expect selective 
engagement with context, appropriate recognition of conclusions but without 
justification, and qualitative rather than quantitative use of statistical ideas. 

2. Informal Task-steps require only colloquial or informal engagement with context often 
reflecting intuitive non-statistical beliefs, single elements of complex 
terminology and settings, and basic one-step straightforward table, graph, and 
chance calculations. 

1. Idiosyncratic Task-steps at this level suggest idiosyncratic engagement with context, 
tautological use of terminology, and basic mathematical skills associated with 
one-to-one counting and reading cell values in tables. 

 

Possible tasks 
The tasks that are suggested here are intended to be flexible in terms of problem 
context and number of parts, to fit the classroom situation (year level, time available, 
method of administration). When statistical literacy (SL) levels are given they refer to 
Table 1. 

Tasks used previously 
Task set 1: Coins 

This set of related tasks is built on the big ideas of variation, expectation, and 
randomness.  

(a) Imagine you are playing a game where you throw a coin 4 times. How many tails 
do you think might come up? 

 

Code Description SL 
Level 

2 2 tails or 50% 3 
1 Any other number , “you don’t know, could be any of them” 1 
0 No response  
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(b)  Explain why? 

 

Code Description Examples SL 
Level 

3 2 but also recognising 
variations and / or 
attempts to quantify the 
highest likelihood  

“2, because that has a 37.5% chance, but the 
others could happen, they are just less 
chance.” 
“Most times a tail should normally appear at 
least once in those four throws but there are a 
whole lot of possibilities as shown above” 
(student lists possibilities) 

6 

2 2 because there is a 50% 
chance, 50–50 of 
throwing a head or a tail, 
probability of a tail 1 in 2. 

“2 tails because a coin has only 2 sides so we 
can only assume that the results will be 50–
50” 
“2. Because the probability of a tails being 
shown is ½.” 

4 

Recognises variation by 
stating “you can’t really 
tell how many tails might 
come up” 

“you can’t tell because you can’t control it, it 
falls the way it wants to fall” 
“you won’t know” 

 

1 Idiosyncratic reasoning or 
possible misinterpretation 
 

“Because 8 possibilities and 4 successes” 
“Well I’m not sure there is a 20% chance of 
all 5 combinations” 

1 

0 No response, no 
explanation 

“I don’t know”  

 

(c)  Imagine you are playing a game where you throw a coin 4 times. Imagine that 100 
people played the game. In the table below, fill in how many people you think will 
get each number of tails. 

 

Number of tails Number of people getting the number of tails 
0  
1  
2  
3  
4  

Total 100 
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Code Description Examples SL 
Level 

3 Appropriate variability 
displayed incorporating 
probability and 
distribution 

Does not give a probabilistic example like 
Code 2 
All predictions made within the desired 
ranges below 
Prediction for 2 tails=30–45; Prediction for 1 
and 3 tails=18–33; Prediction for 0 and 4 
tails=3–10 
“10, 20, 35, 25, 10” 

6 

2 Too narrow or no 
variation – extreme 
probabilistic outcome  

Prediction for 2 tails = 37 or 38 (37.5) 
Prediction for 1 and 3 tails = 25 
Prediction for 0 and 4 tails = 6 or 7 (6.25) 

5 

 Primitive understanding 
of proportion – 50% 
chance for 2 tails 

“0, 25, 50, 25, 0” or “5, 20, 50, 20, 5”  
“10, 20, 40, 20 , 10” or “6, 10, 60, 20, 4” or  
“15, 15, 50, 10, 10” 

 

1 Assumes equality for all 
options 

“20, 20, 20, 20, 20, 20”  
3 

 Seemingly random 
prediction 
Gets proportion in the 
wrong spot 

“10, 30, 40, 1, 19” “0, 25, 25, 25, 25” 
“5, 40, 30, 20, 5”  “1, 3, 89, 5, 2” 

0 Does not add to 100 – 
Possible 
misinterpretation 

“10, 10, 10, 10, 10” 
“0, 0, 100, 0, 0”  

 

 No response   

 

(d)  Explain why you think these numbers are reasonable. 

 

Code Description Examples SL 
Level 

4 Reasoning reflecting 
aspects of chance and 
probability (some kind of 
variation) 

“Because out of 100 people not very many are 
going to get 0 tails or 4 out of 4 tails, it is 
most likely they’ll get 2 tails and 2 heads 
because there’s 2 different faces and 4 
chances” 

6 

3 Implicit understanding of 
chance and probability, 
sometimes mentioning 
50% or 1/2 chance  
(or answer reflecting a ‘4’ 
but not as clear) 

“I think it would most likely be even because 
there’s a 50% chance it will come up” 
“They are reasonable because it is most likely 
that more people will get 2 out of 4” 

5 

2 Reasoning reflecting an 
even or equal chance for 
all numbers 

“Because they all have equal opportunity” 4 

 Anything can happen, 
chance and luck 

“It’s random so no one knows what will come 
up” 

 

1 Idiosyncratic reasoning 
and personal beliefs 

“Because tails never fails” 
“because it adds up to 100” 

3 

0 No reason   
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Task set 2: Heights 

This set of related tasks is built on the big ideas of variation, expectation, and 
distribution.  

The following graphs describe some data collected about Grade 7 students’ heights in two 
different schools. 

              School A             School B 

(a) How many students are 156 cm tall in each school? 
School A ____________________ School B _____________________ 

Code Description SL 
Level 

1 Reads correct values from graph, A=9 and B=10 1 
0 Any other value/s or written responses  
 No response  

(b) Which graph shows more variability in students’ heights?  

Code Description SL 
Level 

2 School A 3 
1 School B 1 
 The Same  

0 Any other written response  
 No response  

(c) Explain why you think this.  

Code Description Examples SL 
Level 

4 Mentions explicitly the wide 
range/spread and/or variety of 
arm spans 

“b/c one of the students has an armspan of 165 
cm and another has one of 145 cm and school B 
just has a range b/n 149 cm and 162 cm” 

Top 5 

3 Mentions implicitly the wide 
range/difference of arm spans 

“School A takes up the whole graph and B 
doesn’t” 

4 

2 Focuses on the size of the 
individual bars without regard 
to what they represent 

“B – because it goes up and down and varies 
more” 
“B – they are nearly all different” 

4 

 Focuses on the number of 
individual bars without regard 
to what they represent (need 
to state some feature of the 
graph) 

“A, because the graph in School A shows more 
lines” 
A – has more lengths, more numbers. 
“There are more numbers of arm spans to read”  

 

1 Misapplies notion of variability 
and focuses on an average 
height 

“A, a lot of people are around about the same 
arm span in that school” 
B – it goes up higher 

Low 4 

0 Focuses on the content of data “A, more people are bigger” 
 Aesthetic appearance and 

personal preference and graph 
lay out 

“A, easier to see which is taller” 
“A, it has more detail” 
“School B goes up in 5’s” 

 Misreads data or misinterprets 
question, unjustified 
statements 

“There are more people in school A” 
“A – because it looked like they interviewed 
more people”  

 

 No reason 
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Suggested new tasks 
The next four task-sets are suggested specifically to address the four stages of a 
statistical investigation in Figure 2. As shown in Figures 3 to 6, students do not create 
their own answers but critique the answers of others. Students could also be asked to 
supply their own response first before responding to the others. This type of task 
requires students to provide arguments either for or against what is provided in the 
cells on the left. There could be more than  one appropriate response in the list or there 
could be none. In the latter case students could be asked to provide their own answer at 
the bottom of the sheet. There could also be responses that have some positive and 
some negative attributes. The tasks can be as easy or difficult as required. The 
motivation for this type of task came from Jacobs (1999) who provided an example 
similar to Step 2 (Figure 4) in what follows. Given examples like the following as 
starting points, teachers in a school at a particular grade level can work together on 
adaptations and the development of rubrics. Possible rubrics and hypothesised levels of 
the statistical literacy hierarchy are provided in Appendix 2 for Step 2 as models for the 
other three steps, although these levels have not, as yet, been verified and are open to 
interpretation.  

 
Figure 3. Step 1 in a statistical investigation: Once the context for the investigation has been set, 

the question is posed. 

 

Figure 4. Step 2 in a statistical investigation: Once the context has been set and the question 
posed, data are collected. 



WATSON & CALLINGHAM 

162 

 

Figure 5. Step 3 in a statistical investigation: Once the data have been collected to answer the 
question, the data are analysed to find evidence to answer the question. 

 

Figure 6. Step 4 in a statistical investigation: Once the representation of the evidence from the 
data is presented a decision is made on the question posed. 

Conclusion 
The suggestions for rich tasks for building statistical reasoning have been linked to the 
six levels of the Statistical Literacy hierarchy of Watson and Callingham (2003). The 
Scaffolding Numeracy of Siemon, Izard, Breed, and Virgona (2006) has eight levels for 
multiplicative reasoning. Further research is needed to link the two hierarchies but this 
paper presents some tasks that might be used as a starting point. 
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Appendix 2 
Possible rubrics and statistical literacy hierarchy levels for tasks at Step 2 in a statistical 
investigation: Data collection(Figure 4). 

 


